|
import os |
|
import io |
|
import logging |
|
from typing import Optional, Dict, Any, Union |
|
from fastapi import FastAPI, HTTPException |
|
from pydantic import BaseModel |
|
from PIL import Image |
|
import base64 |
|
|
|
|
|
from handler import EndpointHandler |
|
|
|
|
|
logging.basicConfig(level=logging.INFO, |
|
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s') |
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
app = FastAPI(title="diffsketcher_edit API", description="API for diffsketcher_edit text-to-SVG generation") |
|
|
|
|
|
model_dir = os.environ.get("MODEL_DIR", "/code/model_weights") |
|
handler = EndpointHandler(model_dir) |
|
logger.info(f"Initialized handler with model_dir: {model_dir}") |
|
|
|
class TextToImageRequest(BaseModel): |
|
inputs: Union[str, Dict[str, Any]] |
|
|
|
@app.post("/") |
|
async def generate_image(request: TextToImageRequest): |
|
|
|
try: |
|
logger.info(f"Received request: {request}") |
|
|
|
|
|
image = handler(request.dict()) |
|
|
|
|
|
img_byte_arr = io.BytesIO() |
|
image.save(img_byte_arr, format='PNG') |
|
img_byte_arr = img_byte_arr.getvalue() |
|
|
|
|
|
return {"image": base64.b64encode(img_byte_arr).decode('utf-8')} |
|
except Exception as e: |
|
logger.error(f"Error processing request: {e}") |
|
raise HTTPException(status_code=500, detail=str(e)) |
|
|
|
@app.get("/health") |
|
async def health_check(): |
|
|
|
return {"status": "ok"} |
|
|
|
if __name__ == "__main__": |
|
import uvicorn |
|
uvicorn.run(app, host="0.0.0.0", port=8000) |
|
|