File size: 5,514 Bytes
7aefe45 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image
import torch
from torchvision.utils import make_grid
def plt_batch(
photos: torch.Tensor,
sketch: torch.Tensor,
step: int,
prompt: str,
save_path: str,
name: str,
dpi: int = 300
):
if photos.shape != sketch.shape:
raise ValueError("photos and sketch must have the same dimensions")
plt.figure()
plt.subplot(1, 2, 1) # nrows=1, ncols=2, index=1
grid = make_grid(photos, normalize=True, pad_value=2)
ndarr = grid.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to("cpu", torch.uint8).numpy()
plt.imshow(ndarr)
plt.axis("off")
plt.title("Generated sample")
plt.subplot(1, 2, 2) # nrows=1, ncols=2, index=2
grid = make_grid(sketch, normalize=False, pad_value=2)
ndarr = grid.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to("cpu", torch.uint8).numpy()
plt.imshow(ndarr)
plt.axis("off")
plt.title(f"Rendering result - {step} steps")
plt.suptitle(insert_newline(prompt), fontsize=10)
plt.tight_layout()
plt.savefig(f"{save_path}/{name}.png", dpi=dpi)
plt.close()
def plt_triplet(
photos: torch.Tensor,
sketch: torch.Tensor,
style: torch.Tensor,
step: int,
prompt: str,
save_path: str,
name: str,
dpi: int = 300
):
if photos.shape != sketch.shape:
raise ValueError("photos and sketch must have the same dimensions")
plt.figure()
plt.subplot(1, 3, 1) # nrows=1, ncols=3, index=1
grid = make_grid(photos, normalize=True, pad_value=2)
ndarr = grid.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to("cpu", torch.uint8).numpy()
plt.imshow(ndarr)
plt.axis("off")
plt.title("Generated sample")
plt.subplot(1, 3, 2) # nrows=1, ncols=3, index=2
# style = (style + 1) / 2
grid = make_grid(style, normalize=False, pad_value=2)
ndarr = grid.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to("cpu", torch.uint8).numpy()
plt.imshow(ndarr)
plt.axis("off")
plt.title(f"Style")
plt.subplot(1, 3, 3) # nrows=1, ncols=3, index=2
# sketch = (sketch + 1) / 2
grid = make_grid(sketch, normalize=False, pad_value=2)
ndarr = grid.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to("cpu", torch.uint8).numpy()
plt.imshow(ndarr)
plt.axis("off")
plt.title(f"Rendering result - {step} steps")
plt.suptitle(insert_newline(prompt), fontsize=10)
plt.tight_layout()
plt.savefig(f"{save_path}/{name}.png", dpi=dpi)
plt.close()
def insert_newline(string, point=9):
# split by blank
words = string.split()
if len(words) <= point:
return string
word_chunks = [words[i:i + point] for i in range(0, len(words), point)]
new_string = "\n".join(" ".join(chunk) for chunk in word_chunks)
return new_string
def log_tensor_img(inputs, output_dir, output_prefix="input", norm=False, dpi=300):
grid = make_grid(inputs, normalize=norm, pad_value=2)
ndarr = grid.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to("cpu", torch.uint8).numpy()
plt.imshow(ndarr)
plt.axis("off")
plt.tight_layout()
plt.savefig(f"{output_dir}/{output_prefix}.png", dpi=dpi)
plt.close()
def plt_tensor_img(tensor, title, save_path, name, dpi=500):
grid = make_grid(tensor, normalize=True, pad_value=2)
ndarr = grid.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to("cpu", torch.uint8).numpy()
plt.imshow(ndarr)
plt.axis("off")
plt.title(f"{title}")
plt.savefig(f"{save_path}/{name}.png", dpi=dpi)
plt.close()
def save_tensor_img(tensor, save_path, name, dpi=500):
grid = make_grid(tensor, normalize=True, pad_value=2)
ndarr = grid.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to("cpu", torch.uint8).numpy()
plt.imshow(ndarr)
plt.axis("off")
plt.tight_layout()
plt.savefig(f"{save_path}/{name}.png", dpi=dpi)
plt.close()
def plt_attn(attn, threshold_map, inputs, inds, output_path):
# currently supports one image (and not a batch)
plt.figure(figsize=(10, 5))
plt.subplot(1, 3, 1)
main_im = make_grid(inputs, normalize=True, pad_value=2)
main_im = np.transpose(main_im.cpu().numpy(), (1, 2, 0))
plt.imshow(main_im, interpolation='nearest')
plt.scatter(inds[:, 1], inds[:, 0], s=10, c='red', marker='o')
plt.title("input img")
plt.axis("off")
plt.subplot(1, 3, 2)
plt.imshow(attn, interpolation='nearest', vmin=0, vmax=1)
plt.title("attn map")
plt.axis("off")
plt.subplot(1, 3, 3)
threshold_map_ = (threshold_map - threshold_map.min()) / \
(threshold_map.max() - threshold_map.min())
plt.imshow(np.nan_to_num(threshold_map_), interpolation='nearest', vmin=0, vmax=1)
plt.title("prob softmax")
plt.scatter(inds[:, 1], inds[:, 0], s=10, c='red', marker='o')
plt.axis("off")
plt.tight_layout()
plt.savefig(output_path)
plt.close()
def fix_image_scale(im):
im_np = np.array(im) / 255
height, width = im_np.shape[0], im_np.shape[1]
max_len = max(height, width) + 20
new_background = np.ones((max_len, max_len, 3))
y, x = max_len // 2 - height // 2, max_len // 2 - width // 2
new_background[y: y + height, x: x + width] = im_np
new_background = (new_background / new_background.max()
* 255).astype(np.uint8)
new_im = Image.fromarray(new_background)
return new_im
|