File size: 6,958 Bytes
7aefe45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import copy

import torch
import torch.nn as nn

__all__ = ['EMA']


class EMA(nn.Module):
    """
    Implements exponential moving average shadowing for your model.
    Utilizes an inverse decay schedule to manage longer term training runs.
    By adjusting the power, you can control how fast EMA will ramp up to your specified beta.
    @crowsonkb's notes on EMA Warmup:
    If gamma=1 and power=1, implements a simple average. gamma=1, power=2/3 are
    good values for models you plan to train for a million or more steps (reaches decay
    factor 0.999 at 31.6K steps, 0.9999 at 1M steps), gamma=1, power=3/4 for models
    you plan to train for less (reaches decay factor 0.999 at 10K steps, 0.9999 at
    215.4k steps).
    Args:
        inv_gamma (float): Inverse multiplicative factor of EMA warmup. Default: 1.
        power (float): Exponential factor of EMA warmup. Default: 1.
        min_value (float): The minimum EMA decay rate. Default: 0.
    """

    def __init__(
            self,
            model,
            # if your model has lazylinears or other types of non-deepcopyable modules,
            # you can pass in your own ema model
            ema_model=None,
            beta=0.9999,
            update_after_step=100,
            update_every=10,
            inv_gamma=1.0,
            power=2 / 3,
            min_value=0.0,
            param_or_buffer_names_no_ema=set(),
            ignore_names=set(),
            ignore_startswith_names=set(),
            # set this to False if you do not wish for the online model to be
            # saved along with the ema model (managed externally)
            include_online_model=True
    ):
        super().__init__()
        self.beta = beta

        # whether to include the online model within the module tree, so that state_dict also saves it
        self.include_online_model = include_online_model

        if include_online_model:
            self.online_model = model
        else:
            self.online_model = [model]  # hack

        # ema model
        self.ema_model = ema_model

        if not exists(self.ema_model):
            try:
                self.ema_model = copy.deepcopy(model)
            except:
                print('Your model was not copyable. Please make sure you are not using any LazyLinear')
                exit()

        self.ema_model.requires_grad_(False)

        self.parameter_names = {name for name, param in self.ema_model.named_parameters() if param.dtype == torch.float}
        self.buffer_names = {name for name, buffer in self.ema_model.named_buffers() if buffer.dtype == torch.float}

        self.update_every = update_every
        self.update_after_step = update_after_step

        self.inv_gamma = inv_gamma
        self.power = power
        self.min_value = min_value

        assert isinstance(param_or_buffer_names_no_ema, (set, list))
        self.param_or_buffer_names_no_ema = param_or_buffer_names_no_ema  # parameter or buffer

        self.ignore_names = ignore_names
        self.ignore_startswith_names = ignore_startswith_names

        self.register_buffer('initted', torch.Tensor([False]))
        self.register_buffer('step', torch.tensor([0]))

    @property
    def model(self):
        return self.online_model if self.include_online_model else self.online_model[0]

    def restore_ema_model_device(self):
        device = self.initted.device
        self.ema_model.to(device)

    def get_params_iter(self, model):
        for name, param in model.named_parameters():
            if name not in self.parameter_names:
                continue
            yield name, param

    def get_buffers_iter(self, model):
        for name, buffer in model.named_buffers():
            if name not in self.buffer_names:
                continue
            yield name, buffer

    def copy_params_from_model_to_ema(self):
        for (_, ma_params), (_, current_params) in zip(self.get_params_iter(self.ema_model),
                                                       self.get_params_iter(self.model)):
            ma_params.data.copy_(current_params.data)

        for (_, ma_buffers), (_, current_buffers) in zip(self.get_buffers_iter(self.ema_model),
                                                         self.get_buffers_iter(self.model)):
            ma_buffers.data.copy_(current_buffers.data)

    def get_current_decay(self):
        epoch = clamp(self.step.item() - self.update_after_step - 1, min_value=0.)
        value = 1 - (1 + epoch / self.inv_gamma) ** - self.power

        if epoch <= 0:
            return 0.

        return clamp(value, min_value=self.min_value, max_value=self.beta)

    def update(self):
        step = self.step.item()
        self.step += 1

        if (step % self.update_every) != 0:
            return

        if step <= self.update_after_step:
            self.copy_params_from_model_to_ema()
            return

        if not self.initted.item():
            self.copy_params_from_model_to_ema()
            self.initted.data.copy_(torch.Tensor([True]))

        self.update_moving_average(self.ema_model, self.model)

    @torch.no_grad()
    def update_moving_average(self, ma_model, current_model):
        current_decay = self.get_current_decay()

        for (name, current_params), (_, ma_params) in zip(self.get_params_iter(current_model),
                                                          self.get_params_iter(ma_model)):
            if name in self.ignore_names:
                continue

            if any([name.startswith(prefix) for prefix in self.ignore_startswith_names]):
                continue

            if name in self.param_or_buffer_names_no_ema:
                ma_params.data.copy_(current_params.data)
                continue

            ma_params.data.lerp_(current_params.data, 1. - current_decay)

        for (name, current_buffer), (_, ma_buffer) in zip(self.get_buffers_iter(current_model),
                                                          self.get_buffers_iter(ma_model)):
            if name in self.ignore_names:
                continue

            if any([name.startswith(prefix) for prefix in self.ignore_startswith_names]):
                continue

            if name in self.param_or_buffer_names_no_ema:
                ma_buffer.data.copy_(current_buffer.data)
                continue

            ma_buffer.data.lerp_(current_buffer.data, 1. - current_decay)

    def __call__(self, *args, **kwargs):
        return self.ema_model(*args, **kwargs)


def exists(val):
    return val is not None


def is_float_dtype(dtype):
    return any([dtype == float_dtype for float_dtype in (torch.float64, torch.float32, torch.float16, torch.bfloat16)])


def clamp(value, min_value=None, max_value=None):
    assert exists(min_value) or exists(max_value)
    if exists(min_value):
        value = max(value, min_value)

    if exists(max_value):
        value = min(value, max_value)

    return value