File size: 1,492 Bytes
6be789c
 
a9cb3fe
6be789c
 
85fba7f
 
a9cb3fe
85fba7f
 
8ecc39e
a9cb3fe
8ecc39e
a9cb3fe
 
 
 
 
40a9d70
a9cb3fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab2ec47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
language:
- en
base_model:
- Ultralytics/YOLOv8
datasets:
- jonalvarez01/reto2g2-dataset
---


# Mobile and Hat Detection Model - YOLOv8

This repository contains a YOLOv8 model trained to detect mobile phones and hats in images.

## Model Description

The model was trained using YOLOv8n architecture to detect two classes:
- Mobile phones
- Hats

### Training Details
- Base model: YOLOv8n
- Training epochs: 100
- Hardware: CUDA-enabled GPU
- Framework: Ultralytics YOLO

## Usage

```python
from ultralytics import YOLO

# Load the model
model = YOLO('path_to_model.pt')

# Perform detection on an image
results = model('path_to_image.jpg')
```

## Training Code

The model was trained using the following script:

```python
from ultralytics import YOLO

# Load a model
model = YOLO("yolov8n.pt").to('cuda')
# Train the model
results = model.train(data="data.yaml", epochs=100)
```

## Dataset

The model was trained on a custom dataset containing images of mobile phones and caps. The dataset was structured following YOLO format requirements.


## Model Performance Metrics

The model's performance was evaluated over 100 epochs of training. Here are the key metrics:

<img src="metrics/results.png" width="600" />

### Confusion Matrix

<img src="metrics/confusion_matrix.png" width="400" />

### Precision-Recall Curve


<img src="metrics/P_curve.png" width="400" />
<img src="metrics/R_curve.png" width="400" />

### F1-Score Curve

<img src="metrics/F1_curve.png" width="400" />