""" An adaptation of Andrej Karpathy's nanoGPT implementation in PyTorch. Original source: https://github.com/karpathy/nanoGPT Original License: MIT License Copyright (c) 2022 Andrej Karpathy Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. Original comments: Full definition of a GPT Language Model, all of it in this single file. References: 1) the official GPT-2 TensorFlow implementation released by OpenAI: https://github.com/openai/gpt-2/blob/master/src/model.py 2) huggingface/transformers PyTorch implementation: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py """ import math from dataclasses import dataclass import torch import torch.nn as nn from torch.nn import functional as F # @torch.jit.script # good to enable when not using torch.compile, disable when using (our default) def new_gelu(x): """ Implementation of the GELU activation function currently in Google BERT repo (identical to OpenAI GPT). Reference: Gaussian Error Linear Units (GELU) paper: https://arxiv.org/abs/1606.08415 """ return ( 0.5 * x * ( 1.0 + torch.tanh(math.sqrt(2.0 / math.pi) * (x + 0.044715 * torch.pow(x, 3.0))) ) ) class CausalSelfAttention(nn.Module): def __init__(self, config): super().__init__() assert config.n_embd % config.n_head == 0 # key, query, value projections for all heads, but in a batch self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd) # output projection self.c_proj = nn.Linear(config.n_embd, config.n_embd) # regularization self.attn_dropout = nn.Dropout(config.dropout) self.resid_dropout = nn.Dropout(config.dropout) # causal mask to ensure that attention is only applied to the left in the input sequence self.register_buffer( "bias", torch.tril(torch.ones(config.block_size, config.block_size)).view( 1, 1, config.block_size, config.block_size ), ) self.n_head = config.n_head self.n_embd = config.n_embd def forward(self, x): ( B, T, C, ) = x.size() # batch size, sequence length, embedding dimensionality (n_embd) # calculate query, key, values for all heads in batch and move head forward to be the batch dim q, k, v = self.c_attn(x).split(self.n_embd, dim=2) k = k.view(B, T, self.n_head, C // self.n_head).transpose( 1, 2 ) # (B, nh, T, hs) q = q.view(B, T, self.n_head, C // self.n_head).transpose( 1, 2 ) # (B, nh, T, hs) v = v.view(B, T, self.n_head, C // self.n_head).transpose( 1, 2 ) # (B, nh, T, hs) # causal self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T) att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1))) att = att.masked_fill(self.bias[:, :, :T, :T] == 0, float("-inf")) att = F.softmax(att, dim=-1) att = self.attn_dropout(att) y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs) y = ( y.transpose(1, 2).contiguous().view(B, T, C) ) # re-assemble all head outputs side by side # output projection y = self.resid_dropout(self.c_proj(y)) return y class MLP(nn.Module): def __init__(self, config): super().__init__() self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd) self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd) self.dropout = nn.Dropout(config.dropout) def forward(self, x): x = self.c_fc(x) x = new_gelu(x) x = self.c_proj(x) x = self.dropout(x) return x class Block(nn.Module): def __init__(self, config): super().__init__() self.ln_1 = nn.LayerNorm(config.n_embd) self.attn = CausalSelfAttention(config) self.ln_2 = nn.LayerNorm(config.n_embd) self.mlp = MLP(config) def forward(self, x): x = x + self.attn(self.ln_1(x)) x = x + self.mlp(self.ln_2(x)) return x @dataclass class GPTConfig: block_size: int = 1024 input_dim: int = 256 output_dim: int = 256 n_layer: int = 12 n_head: int = 12 n_embd: int = 768 dropout: float = 0.1 class GPT(nn.Module): def __init__(self, config): super().__init__() assert config.input_dim is not None assert config.output_dim is not None assert config.block_size is not None self.config = config self.transformer = nn.ModuleDict( dict( wte=nn.Linear(config.input_dim, config.n_embd), wpe=nn.Embedding(config.block_size, config.n_embd), drop=nn.Dropout(config.dropout), h=nn.ModuleList([Block(config) for _ in range(config.n_layer)]), ln_f=nn.LayerNorm(config.n_embd), ) ) self.lm_head = nn.Linear(config.n_embd, config.output_dim, bias=False) # init all weights, and apply a special scaled init to the residual projections, per GPT-2 paper self.apply(self._init_weights) for pn, p in self.named_parameters(): if pn.endswith("c_proj.weight"): torch.nn.init.normal_( p, mean=0.0, std=0.02 / math.sqrt(2 * config.n_layer) ) # report number of parameters n_params = sum(p.numel() for p in self.parameters()) print("number of parameters: %.2fM" % (n_params / 1e6,)) def forward(self, input, targets=None): device = input.device b, t, d = input.size() assert ( t <= self.config.block_size ), f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}" pos = torch.arange(0, t, dtype=torch.long, device=device).unsqueeze( 0 ) # shape (1, t) # forward the GPT model itself tok_emb = self.transformer.wte( input ) # token embeddings of shape (b, t, n_embd) pos_emb = self.transformer.wpe( pos ) # position embeddings of shape (1, t, n_embd) x = self.transformer.drop(tok_emb + pos_emb) for block in self.transformer.h: x = block(x) x = self.transformer.ln_f(x) logits = self.lm_head(x) return logits def _init_weights(self, module): if isinstance(module, nn.Linear): torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) if module.bias is not None: torch.nn.init.zeros_(module.bias) elif isinstance(module, nn.Embedding): torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) elif isinstance(module, nn.LayerNorm): torch.nn.init.zeros_(module.bias) torch.nn.init.ones_(module.weight) def crop_block_size(self, block_size): assert block_size <= self.config.block_size self.config.block_size = block_size self.transformer.wpe.weight = nn.Parameter( self.transformer.wpe.weight[:block_size] ) for block in self.transformer.h: block.attn.bias = block.attn.bias[:, :, :block_size, :block_size] def configure_optimizers(self, weight_decay, learning_rate, betas): """ This long function is unfortunately doing something very simple and is being very defensive: We are separating out all parameters of the model into two buckets: those that will experience weight decay for regularization and those that won't (biases, and layernorm/embedding weights). We are then returning the PyTorch optimizer object. """ # separate out all parameters to those that will and won't experience regularizing weight decay decay = set() no_decay = set() whitelist_weight_modules = (torch.nn.Linear,) blacklist_weight_modules = (torch.nn.LayerNorm, torch.nn.Embedding) for mn, m in self.named_modules(): for pn, p in m.named_parameters(): fpn = "%s.%s" % (mn, pn) if mn else pn # full param name if pn.endswith("bias"): # all biases will not be decayed no_decay.add(fpn) elif pn.endswith("weight") and isinstance(m, whitelist_weight_modules): # weights of whitelist modules will be weight decayed decay.add(fpn) elif pn.endswith("weight") and isinstance(m, blacklist_weight_modules): # weights of blacklist modules will NOT be weight decayed no_decay.add(fpn) # validate that we considered every parameter param_dict = {pn: p for pn, p in self.named_parameters()} inter_params = decay & no_decay union_params = decay | no_decay assert len(inter_params) == 0, ( "parameters %s made it into both decay/no_decay sets!" % (str(inter_params),) ) assert len(param_dict.keys() - union_params) == 0, ( "parameters %s were not separated into either decay/no_decay set!" % (str(param_dict.keys() - union_params),) ) # create the pytorch optimizer object optim_groups = [ { "params": [param_dict[pn] for pn in sorted(list(decay))], "weight_decay": weight_decay, }, { "params": [param_dict[pn] for pn in sorted(list(no_decay))], "weight_decay": 0.0, }, ] optimizer = torch.optim.AdamW(optim_groups, lr=learning_rate, betas=betas) return optimizer