import torch | |
import torch.nn as nn | |
class IdentityProjector(nn.Module): | |
def __init__( | |
self, | |
input_dim: int, | |
output_dim: int, | |
): | |
super().__init__() | |
self.placeholder_param = nn.Parameter(torch.zeros(1)) | |
def forward(self, *args): | |
return args[0] | |
def configure_optimizers(self, weight_decay, lr, betas): | |
return torch.optim.AdamW( | |
self.parameters(), lr=lr, betas=betas, weight_decay=weight_decay | |
) | |