File size: 4,176 Bytes
393d3de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import utils
import hydra
import torch
import einops

import numpy as np

from workspaces import base
from utils import get_split_idx

from accelerate import Accelerator

accelerator = Accelerator()
OBS_ELEMENT_INDICES = {
    "agent_pos": np.arange(0, 2),
    "block_pos": np.arange(2, 4),
    "block_rot": np.arange(4, 5),
}


def calc_state_dist(a, b):
    result = {}
    for k, v in OBS_ELEMENT_INDICES.items():
        idx = torch.Tensor(v).long()
        result[k] = ((a[idx] - b[idx]) ** 2).mean()
    result["total"] = ((a - b) ** 2).mean()
    return result


def mean_dicts(dicts):
    result = {}
    for k in dicts[0].keys():
        result[k] = np.mean([x[k] for x in dicts])
    return result


class PushTWorkspace(base.Workspace):
    def __init__(self, cfg, work_dir):
        super().__init__(cfg, work_dir)

    def _report_result_upon_completion(self, goal_idx=None):
        return {
            "max_coverage": max(self.env.coverage_arr),
            "final_coverage": self.env.coverage_arr[-1],
        }

    def run_offline_eval(self):
        train_idx, val_idx = get_split_idx(
            len(self.dataset),
            self.cfg.seed,
            train_fraction=self.cfg.train_fraction,
        )
        embeddings = utils.inference.embed_trajectory_dataset(
            self.encoder, self.dataset
        )
        embeddings = [
            einops.rearrange(x, "T V E -> T (V E)") for x in embeddings
        ]  # flatten views
        if self.accelerator.is_main_process:
            states = []
            actions = []
            for i in range(len(self.dataset)):
                T = self.dataset.get_seq_length(i)
                states.append(self.dataset.states[i, :T])
                actions.append(self.dataset.actions[i, :T])
            embd_state_linear_probe_results = (
                utils.inference.linear_probe_with_trajectory_split(
                    embeddings,
                    states,
                    train_idx,
                    val_idx,
                )
            )
            # add prefix to keys
            embd_state_linear_probe_results = {
                f"embd_state_{k}": v for k, v in embd_state_linear_probe_results.items()
            }
            embd_action_linear_probe_results = (
                utils.inference.linear_probe_with_trajectory_split(
                    embeddings,
                    actions,
                    train_idx,
                    val_idx,
                )
            )
            embd_action_linear_probe_results = {
                f"embd_action_{k}": v
                for k, v in embd_action_linear_probe_results.items()
            }

            state_dists = []
            N = 200
            rng = np.random.default_rng(self.cfg.seed)
            for i in range(N):
                query_traj_idx = rng.choice(len(self.dataset))
                query_frame_idx = rng.choice(
                    range(10, self.dataset.get_seq_length(query_traj_idx))
                )
                query_embedding = embeddings[query_traj_idx][query_frame_idx]
                query_frame_state = self.dataset.states[query_traj_idx, query_frame_idx]

                pool_embeddings = torch.cat(
                    [x for i, x in enumerate(embeddings) if i != query_traj_idx]
                )
                pool_states = torch.cat(
                    [x for i, x in enumerate(states) if i != query_traj_idx]
                )
                _, nn_idx = utils.inference.batch_knn(
                    query_embedding.unsqueeze(0),
                    pool_embeddings,
                    metric=utils.inference.mse,
                    k=1,
                    batch_size=1,
                )
                closest_frame_state = pool_states[nn_idx[0, 0]]
                state_dist = calc_state_dist(query_frame_state, closest_frame_state)
                state_dists.append(state_dist)
            mean_state_dist = mean_dicts(state_dists)
            return {
                **embd_state_linear_probe_results,
                **embd_action_linear_probe_results,
                **mean_state_dist,
            }
        else:
            return None