File size: 5,637 Bytes
393d3de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import torch
import einops
import torch.nn as nn
import torch.nn.functional as F
from .vector_quantize_pytorch import ResidualVQ


def weights_init_encoder(m):
    if isinstance(m, nn.Linear):
        nn.init.orthogonal_(m.weight.data)
        m.bias.data.fill_(0.0)
    elif isinstance(m, nn.Conv2d) or isinstance(m, nn.ConvTranspose2d):
        assert m.weight.size(2) == m.weight.size(3)
        m.weight.data.fill_(0.0)
        m.bias.data.fill_(0.0)
        mid = m.weight.size(2) // 2
        gain = nn.init.calculate_gain("relu")
        nn.init.orthogonal_(m.weight.data[:, :, mid, mid], gain)


class EncoderMLP(nn.Module):
    def __init__(
        self,
        input_dim,
        output_dim=16,
        hidden_dim=128,
        layer_num=1,
        last_activation=None,
    ):
        super(EncoderMLP, self).__init__()
        layers = []

        layers.append(nn.Linear(input_dim, hidden_dim))
        layers.append(nn.ReLU())
        for _ in range(layer_num):
            layers.append(nn.Linear(hidden_dim, hidden_dim))
            layers.append(nn.ReLU())

        self.encoder = nn.Sequential(*layers)
        self.fc = nn.Linear(hidden_dim, output_dim)

        if last_activation is not None:
            self.last_layer = last_activation
        else:
            self.last_layer = None
        self.apply(weights_init_encoder)

    def forward(self, x):
        h = self.encoder(x)
        state = self.fc(h)
        if self.last_layer:
            state = self.last_layer(state)
        return state


class VqVae(nn.Module):
    def __init__(
        self,
        input_dim_h=10,  # length of action chunk
        input_dim_w=9,  # action dim
        n_latent_dims=512,
        vqvae_n_embed=32,
        vqvae_groups=4,
        encoder_loss_multiplier=1.0,
        act_scale=1.0,
    ):
        super(VqVae, self).__init__()
        self.n_latent_dims = n_latent_dims
        self.input_dim_h = input_dim_h
        self.input_dim_w = input_dim_w
        self.rep_dim = self.n_latent_dims
        self.vqvae_n_embed = vqvae_n_embed
        self.vqvae_groups = vqvae_groups
        self.encoder_loss_multiplier = encoder_loss_multiplier
        self.act_scale = act_scale

        discrete_cfg = {"groups": self.vqvae_groups, "n_embed": self.vqvae_n_embed}

        self.vq_layer = ResidualVQ(
            dim=self.n_latent_dims,
            num_quantizers=discrete_cfg["groups"],
            codebook_size=self.vqvae_n_embed,
        )
        self.embedding_dim = self.n_latent_dims

        self.encoder = EncoderMLP(
            input_dim=input_dim_w * self.input_dim_h, output_dim=n_latent_dims
        )
        self.decoder = EncoderMLP(
            input_dim=n_latent_dims, output_dim=input_dim_w * self.input_dim_h
        )

    def draw_logits_forward(self, encoding_logits):
        z_embed = self.vq_layer.draw_logits_forward(encoding_logits)
        return z_embed

    def draw_code_forward(self, encoding_indices):
        with torch.no_grad():
            z_embed = self.vq_layer.get_codes_from_indices(encoding_indices)
            z_embed = z_embed.sum(dim=0)
        return z_embed

    def get_action_from_latent(self, latent) -> torch.Tensor:
        output = self.decoder(latent) * self.act_scale
        return einops.rearrange(output, "... (T A) -> ... T A", A=self.input_dim_w)

    def preprocess(self, state):
        state = torch.Tensor(state)
        state = state / self.act_scale
        if self.input_dim_h == 1:
            state = state.squeeze(-2)  # state.squeeze(-1)
        else:
            state = einops.rearrange(state, "... T A -> ... (T A)")
        return state

    def get_code(self, state):
        state = self.preprocess(state)
        with torch.no_grad():
            state_rep = self.encoder(state)
            state_vq, vq_code, vq_loss_state = self.vq_layer(state_rep)
            vq_loss_state = torch.sum(vq_loss_state)
            return state_vq, vq_code

    def forward(self, state):
        state = self.preprocess(state)
        state_rep = self.encoder(state)
        state_rep_shape = state_rep.shape[:-1]
        state_rep_flat = state_rep.view(state_rep.size(0), -1, state_rep.size(1))
        state_rep_flat, vq_code, vq_loss_state = self.vq_layer(state_rep_flat)
        state_vq = state_rep_flat.view(*state_rep_shape, -1)
        vq_code = vq_code.view(*state_rep_shape, -1)
        dec_out = self.decoder(state_vq)

        vq_loss_state = vq_loss_state.sum()
        encoder_loss = (state - dec_out).abs().mean()
        vqvae_recon_loss = F.mse_loss(state, dec_out)

        loss = encoder_loss * self.encoder_loss_multiplier + (vq_loss_state * 5)
        loss_dict = {
            "loss": loss.detach().clone(),
            "vq_loss_state": vq_loss_state.detach().clone(),
            "vqvae_recon_loss": vqvae_recon_loss.detach().clone(),
            "encoder_loss": encoder_loss.detach().clone(),
        }
        return loss, vq_code, loss_dict

    def state_dict(
        self,
        destination: str = None,
        prefix: str = "",
        keep_vars: bool = False,
    ):
        if destination is None:
            destination = {}
        self.encoder.state_dict(destination, prefix + "encoder", keep_vars)
        self.decoder.state_dict(destination, prefix + "decoder", keep_vars)
        self.vq_layer.state_dict(destination, prefix + "vq_embedding", keep_vars)
        return destination

    def load_state_dict(self, state_dict):
        self.encoder.load_state_dict(state_dict["encoder"])
        self.decoder.load_state_dict(state_dict["decoder"])
        self.vq_layer.load_state_dict(state_dict["vq_embedding"])