File size: 14,226 Bytes
393d3de |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 |
import tqdm
import torch
import einops
import logging
import torch.nn as nn
from pathlib import Path
from .vqvae import VqVae
import torch.nn.functional as F
from accelerate import Accelerator
from typing import Dict, Optional, Tuple, Sequence
from .gpt import GPT, GPTConfig
from .utils import MLP, batch_idx
accelerator = Accelerator()
def repeat_start_to_length(x: torch.Tensor, length: int, dim: int = 0):
"""
Pad tensor x to length along dim, repeating the first value at the start.
"""
pad_size = length - x.shape[dim]
if pad_size <= 0:
return x
first_frame = x.index_select(dim, torch.tensor(0, device=x.device))
repeat_shape = [1] * len(x.shape)
repeat_shape[dim] = pad_size
pad = first_frame.repeat(*repeat_shape)
return torch.cat([pad, x], dim=dim)
class GroupedOptimizer(torch.optim.Optimizer):
def __init__(self, optimizers: Sequence[torch.optim.Optimizer]):
self.optimizers = optimizers
param_groups = []
for optimizer in self.optimizers:
param_groups.extend(optimizer.param_groups)
super().__init__(param_groups, optimizers[0].defaults)
def step(self, closure=None):
for optimizer in self.optimizers:
optimizer.step(closure)
def zero_grad(self, set_to_none: bool = False):
for optimizer in self.optimizers:
optimizer.zero_grad(set_to_none)
def state_dict(self):
return {
i: optimizer.state_dict() for i, optimizer in enumerate(self.optimizers)
}
def load_state_dict(self, state_dict):
for i, optimizer in enumerate(self.optimizers):
optimizer.load_state_dict(state_dict[i])
class BehaviorTransformer(nn.Module):
def __init__(
self,
obs_dim: int,
act_dim: int,
goal_dim: int,
views: int,
vqvae_latent_dim: int,
vqvae_n_embed: int,
vqvae_groups: int,
vqvae_fit_steps: int,
vqvae_iters: int,
n_layer: int,
n_head: int,
n_embd: int,
dropout: float = 0.0,
vqvae_encoder_loss_multiplier: float = 1.0,
vqvae_batch_size: int = 1024,
act_scale: float = 1.0,
offset_loss_multiplier: float = 1.0e3,
secondary_code_multiplier: float = 0.5,
gamma: float = 2.0,
obs_window_size: int = 10,
act_window_size: int = 10,
):
super().__init__()
self.GOAL_SPEC = ["concat", "stack", "unconditional"]
self._obs_dim = obs_dim * views
self._act_dim = act_dim
self._goal_dim = goal_dim * views
self._obs_window_size = obs_window_size
self._act_window_size = act_window_size
if goal_dim <= 0:
self._cbet_method = "unconditional"
else:
self._cbet_method = "stack"
self._gpt_model = GPT(
GPTConfig(
block_size=obs_window_size + act_window_size,
n_layer=n_layer,
n_head=n_head,
n_embd=n_embd,
dropout=dropout,
input_dim=self._obs_dim + self._goal_dim,
)
)
# the first n batches of actions are collected for VQ training.
self.vqvae_fit_steps = vqvae_fit_steps
self.vqvae_iters = vqvae_iters
self.vqvae_batch_size = vqvae_batch_size
self.vqvae_is_fit = False
self._vqvae_model = VqVae(
input_dim_h=act_window_size,
input_dim_w=act_dim,
n_latent_dims=vqvae_latent_dim,
vqvae_n_embed=vqvae_n_embed,
vqvae_groups=vqvae_groups,
encoder_loss_multiplier=vqvae_encoder_loss_multiplier,
act_scale=act_scale,
)
self._vqvae_optim = torch.optim.Adam(
self._vqvae_model.parameters(),
lr=1e-3,
weight_decay=1e-4,
)
self._G = vqvae_groups
self._C = vqvae_n_embed # number of code integers
self._D = vqvae_latent_dim
self._map_to_cbet_preds_bin = MLP(
in_channels=self._gpt_model.config.output_dim,
hidden_channels=[1024, 1024, self._G * self._C],
)
self._map_to_cbet_preds_offset = MLP(
in_channels=self._gpt_model.config.output_dim,
hidden_channels=[
1024,
1024,
self._G * self._C * (act_dim * self._act_window_size),
],
)
self._collected_actions = []
self._offset_loss_multiplier = offset_loss_multiplier
self._secondary_code_multiplier = secondary_code_multiplier
self._criterion = FocalLoss(gamma=gamma)
def _unpack_actions(self, action_seq: torch.Tensor):
"""Unpack actions from (N, total_window, A) to (N, T, W, A)"""
n, total_w, act_dim = action_seq.shape
act_w = self._act_window_size
obs_w = total_w + 1 - act_w
result = torch.empty((n, obs_w, act_w, act_dim)).to(action_seq.device)
for i in range(obs_w):
result[:, i, :, :] = action_seq[:, i : i + act_w, :]
return result
def _maybe_fit_vq(self):
if self.vqvae_is_fit or len(self._collected_actions) < self.vqvae_fit_steps:
return
all_actions = torch.cat(self._collected_actions)
all_actions = einops.rearrange(all_actions, "N T W A -> (N T) (W A)")
# only train on unique actions
all_actions = torch.unique(all_actions, dim=0)
all_actions = einops.rearrange(
all_actions,
"... (W A) -> ... W A",
W=self._act_window_size,
)
pbar = tqdm.trange(
self.vqvae_iters,
desc="VQ training",
disable=not accelerator.is_local_main_process,
)
for epoch in pbar:
shuffle_idx = torch.randperm(len(all_actions))
for i in range(0, len(all_actions), self.vqvae_batch_size):
batch = all_actions[shuffle_idx[i : i + self.vqvae_batch_size]]
loss, vq_code, loss_dict = self._vqvae_model(batch)
self._vqvae_optim.zero_grad()
loss.backward()
self._vqvae_optim.step()
accelerator.wait_for_everyone()
# wrapping the the model in DDP syncs the weights from main to other processes
self._vqvae_model = accelerator.prepare(self._vqvae_model)
self._vqvae_model = accelerator.unwrap_model(self._vqvae_model)
self._vqvae_model.eval()
print("n_different_codes", len(torch.unique(vq_code)))
print("n_different_combinations", len(torch.unique(vq_code, dim=0)))
print("losses", loss_dict)
self.vqvae_is_fit = True
def train(self, mode=True):
# if vqvae is already trained, make sure we freeze it
super().train(mode)
if self.vqvae_is_fit:
self._vqvae_model.eval()
def forward(
self,
obs_seq: torch.Tensor,
goal_seq: Optional[torch.Tensor],
action_seq: Optional[torch.Tensor],
) -> Tuple[Optional[torch.Tensor], Optional[torch.Tensor], Dict[str, float]]:
if (
(action_seq is not None)
and (len(self._collected_actions) < self.vqvae_fit_steps)
and (self.training)
):
action_seq_all = accelerator.gather(action_seq)
self._collected_actions.append(self._unpack_actions(action_seq_all))
self._maybe_fit_vq()
if obs_seq.shape[1] < self._obs_window_size:
obs_seq = repeat_start_to_length(obs_seq, self._obs_window_size, dim=1)
if self._cbet_method == "unconditional":
gpt_input = obs_seq
elif self._cbet_method == "stack":
gpt_input = torch.cat([goal_seq, obs_seq], dim=-1)
else:
raise NotImplementedError
gpt_output = self._gpt_model(gpt_input) # N, T, n_embd
if self._cbet_method == "concat":
gpt_output = gpt_output[:, goal_seq.size(1) :, :]
else:
gpt_output = gpt_output
cbet_logits, cbet_offsets = self._forward_heads(gpt_output)
predicted_action, decoded_action, sampled_centers, sampled_offsets = (
self._sample_action(cbet_logits, cbet_offsets)
)
if action_seq is not None:
loss, loss_dict = self._calc_loss(
action_seq,
predicted_action,
decoded_action,
sampled_centers,
cbet_logits,
)
else:
loss, loss_dict = None, {}
return predicted_action, loss, loss_dict
def _calc_loss(
self, action_seq, predicted_action, decoded_action, sampled_centers, cbet_logits
):
action_seq = self._unpack_actions(action_seq)
_, action_bins = self._vqvae_model.get_code(action_seq)
# flatten for cross entropy loss
action_bins_flat = einops.rearrange(action_bins, "N T ... -> (N T) ...")
cbet_logits_flat = einops.rearrange(cbet_logits, "N T ... -> (N T) ...")
offset_loss = F.l1_loss(action_seq, predicted_action)
# batch, time, windowsize (t ... t+N), action dim -> [:, -1, 0, :] is for rollout
action_diff = F.mse_loss(action_seq[:, -1, 0], predicted_action[:, -1, 0])
action_diff_tot = F.mse_loss(action_seq[:, -1], predicted_action[:, -1])
action_diff_mean_res1 = (action_seq - decoded_action)[:, -1, 0].abs().mean()
action_diff_mean_res2 = (action_seq - predicted_action)[:, -1, 0].abs().mean()
action_diff_max = (action_seq - predicted_action)[:, -1, 0].abs().max()
cbet_loss1 = self._criterion(cbet_logits_flat[:, 0], action_bins_flat[:, 0])
cbet_loss2 = self._criterion(cbet_logits_flat[:, 1], action_bins_flat[:, 1])
cbet_loss = cbet_loss1 * 5 + cbet_loss2 * self._secondary_code_multiplier
eq_mask = action_bins == sampled_centers
equal_total_code_rate = (eq_mask.sum(-1) == self._G).float().mean()
equal_single_code_rate = eq_mask[..., 0].float().mean()
equal_single_code_rate2 = eq_mask[..., 1].float().mean()
loss = cbet_loss + self._offset_loss_multiplier * offset_loss
loss_dict = {
"classification_loss": cbet_loss.detach().cpu().item(),
"offset_loss": offset_loss.detach().cpu().item(),
"total_loss": loss.detach().cpu().item(),
"equal_total_code_rate": equal_total_code_rate,
"equal_single_code_rate": equal_single_code_rate,
"equal_single_code_rate2": equal_single_code_rate2,
"action_diff": action_diff.detach().cpu().item(),
"action_diff_tot": action_diff_tot.detach().cpu().item(),
"action_diff_mean_res1": action_diff_mean_res1.detach().cpu().item(),
"action_diff_mean_res2": action_diff_mean_res2.detach().cpu().item(),
"action_diff_max": action_diff_max.detach().cpu().item(),
}
if not self.vqvae_is_fit:
loss = loss * 0.0 # do not train the model until VQ is fit
return loss, loss_dict
def _forward_heads(self, gpt_output):
cbet_logits = self._map_to_cbet_preds_bin(gpt_output)
cbet_logits = einops.rearrange(cbet_logits, "N T (G C) -> N T G C", G=self._G)
cbet_offsets = self._map_to_cbet_preds_offset(gpt_output)
cbet_offsets = einops.rearrange(
cbet_offsets,
"N T (G C W A) -> N T G C W A",
G=self._G,
C=self._C,
W=self._act_window_size,
A=self._act_dim,
)
return cbet_logits, cbet_offsets
def _sample_action(self, cbet_logits, cbet_offsets):
# W = action_window
# flatten for downstream VQ decoding
cbet_probs = torch.softmax(cbet_logits, dim=-1)
sampled_centers = einops.rearrange(
torch.multinomial(cbet_probs.view(-1, self._C), num_samples=1),
"(N T G) 1 -> N T G",
N=cbet_probs.shape[0],
T=cbet_probs.shape[1],
G=self._G,
)
centers = self._vqvae_model.draw_code_forward(sampled_centers).clone().detach()
decoded_action = (
self._vqvae_model.get_action_from_latent(centers).clone().detach()
) # N T W A
sampled_offsets = batch_idx(cbet_offsets, sampled_centers) # N T G W A
# offset on each residual VQ group; sum on group dim
sampled_offsets = sampled_offsets.sum(dim=2)
predicted_action = decoded_action + sampled_offsets
return predicted_action, decoded_action, sampled_centers, sampled_offsets
def configure_optimizers(self, weight_decay, learning_rate, betas):
optimizer1 = self._gpt_model.configure_optimizers(
weight_decay=weight_decay,
learning_rate=learning_rate,
betas=betas,
)
optimizer1.add_param_group({"params": self._map_to_cbet_preds_bin.parameters()})
optimizer2 = torch.optim.AdamW(
self._map_to_cbet_preds_offset.parameters(),
lr=learning_rate,
weight_decay=weight_decay,
betas=betas,
)
optim = GroupedOptimizer([optimizer1, optimizer2])
return optim
def load_model(self, path: Path):
if (path / "cbet_model.pt").exists():
self.load_state_dict(torch.load(path / "cbet_model.pt"))
else:
logging.warning("No model found at %s", path)
class FocalLoss(nn.Module):
def __init__(self, gamma: float = 0, reduction: str = "mean"):
super(FocalLoss, self).__init__()
self.gamma = gamma
if reduction not in ("mean", "sum", "none"):
raise NotImplementedError
self.reduction = reduction
def forward(self, input, target):
logpt = F.log_softmax(input, dim=-1)
logpt = logpt.gather(1, target.view(-1, 1)).view(-1)
pt = logpt.exp()
loss = -1 * (1 - pt) ** self.gamma * logpt
if self.reduction == "mean":
return loss.mean()
elif self.reduction == "sum":
return loss.sum()
else:
return loss
|