File size: 2,012 Bytes
393d3de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
# # coding=utf-8
# # Copyright 2022 The Reach ML Authors.
# #
# # Licensed under the Apache License, Version 2.0 (the "License");
# # you may not use this file except in compliance with the License.
# # You may obtain a copy of the License at
# #
# #     http://www.apache.org/licenses/LICENSE-2.0
# #
# # Unless required by applicable law or agreed to in writing, software
# # distributed under the License is distributed on an "AS IS" BASIS,
# # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# # See the License for the specific language governing permissions and
# # limitations under the License.

# """Tests for envs.utils_pybullet."""

# import os
# import tempfile

# from ..block_pushing import block_pushing
# from .utils_pybullet import read_pybullet_state
# from .utils_pybullet import write_pybullet_state
# import numpy as np
# import tensorflow.compat.v2 as tf
# from tf_agents.environments import suite_gym


# class PybulletStateTest(tf.test.TestCase):
#     def test_serialize_deserialize(self):
#         for env_name in [block_pushing.build_env_name("PUSH", False, False)]:
#             env = suite_gym.load(env_name)
#             state = [env.get_pybullet_state()]
#             task = "test"

#             # Serialize the state to file.
#             filename = os.path.join(
#                 tempfile.mkdtemp(dir=self.get_temp_dir()), env_name + ".json.zip"
#             )
#             actions = np.random.rand(1, 2).tolist()
#             write_pybullet_state(filename, state, task, actions=actions)
#             self.assertTrue(tf.io.gfile.exists(filename))
#             data = read_pybullet_state(filename)

#             self.assertEqual(data["task"], task)
#             self.assertEqual(data["pybullet_state"], state)
#             self.assertEqual(data["actions"], actions)

#             # Set the state largely for code coverage.
#             env.set_pybullet_state(data["pybullet_state"][0])


# if __name__ == "__main__":
#     tf.test.main()