--- license: apache-2.0 base_model: - openai/whisper-base pipeline_tag: automatic-speech-recognition language: - en - ru --- OpenAI Whisper base [model](https://huggingface.co/openai/whisper-base) converted to ONNX format for [onnx-asr](https://github.com/istupakov/onnx-asr). Install onnx-asr ```shell pip install onnx-asr[cpu,hub] ``` Load whisper-base model and recognize wav file ```py import onnx_asr model = onnx_asr.load_model("whisper-base") print(model.recognize("test.wav")) ``` ## Model export Read onnxruntime [instruction](https://github.com/microsoft/onnxruntime/blob/main/onnxruntime/python/tools/transformers/models/whisper/README.md) for convert Whisper to ONNX. Download model and export with *Beam Search* and *Forced Decoder Input Ids*: ```shell python3 -m onnxruntime.transformers.models.whisper.convert_to_onnx -m openai/whisper-base --output ./whisper-onnx --use_forced_decoder_ids --optimize_onnx --precision fp32 ``` Save tokenizer config ```py from transformers import WhisperTokenizer processor = WhisperTokenizer.from_pretrained("openai/whisper-base") processor.save_pretrained("whisper-onnx") ```