File size: 26,291 Bytes
bf0e490
61985dd
bf0e490
56b5e49
 
bf0e490
56b5e49
 
 
 
 
bf0e490
61985dd
 
 
 
 
bf0e490
61985dd
 
 
bf0e490
61985dd
 
 
bf0e490
 
837fcf3
bf0e490
61985dd
bf0e490
61985dd
 
 
 
 
4686692
61985dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61faf9d
 
61985dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf0e490
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
---
library_name: transformers
tags:
- voice-cloning
- audio
- unsloth
- orpheus
- snac
- hypaai
- lora
- merged
license: apache-2.0
datasets:
- hypaai/Hypa_Fleurs
- MrDragonFox/Elise
- canopylabs/zac-sample-dataset
- google/fleurs
language:
- ig
- yo
- ha
- en
base_model:
- canopylabs/orpheus-3b-0.1-ft
pipeline_tag: text-to-speech
---

# Hypa_Orpheus-3b-0.1-ft (merged 16-bit)

A 16-bit quantized and merged, memory-efficient fine-tuned version of [`canopylabs/orpheus-3b-0.1-ft`](https://huggingface.co/canopylabs/orpheus-3b-0.1-ft), optimized with Unsloth and LoRA, for expressive multilingual TTS, especially in low-resource African languages. This model provides the following capabilities:

* Text-to-Speech generation
* Speech synthesis for under-represented accents
* Voice cloning & emotion synthesis
* Research on multilingual low-resource voice AI

Check out the model at [`HypaChat`](https://hypachat.com/)

---

## Model Details

### Model Summary

This model was trained on a parallel text-speech dataset totaling over 300 hours (75k samples) of Nigerian-accented and low-resource language audio (Igbo, Yoruba, Hausa). A key part of the dataset comes from AfroVoices' transcription of real-world YouTube data (denoted as Random speaker, ~100+ hrs).
To preserve and enhance multilingual capabilities while avoiding catastrophic forgetting, we included synthetic speech-text data sampled from the original 8 Orpheus voices using the default emotional prompts.
The final training set also included new speakers like:
* Eniola (40 hrs) – Female, bold, clear
* Moyo (40 hrs) – Female, professional, articulate
* Lovelyn (35 hrs) – Female, warm, shy
* Precious (30 hrs) – Female, friendly, gentle

This model sets state-of-the-art performance on low-resource Multilingual TTS tasks across African languages (see training stats below).

### Base Model Details

The default Orpheus-TTS model released by [`Canopy Labs`](https://canopylabs.ai/releases/orpheus_can_speak_any_language) supports the below voices and emotions:

Voices: `tara`, `leah`, `jess`, `leo`, `dan`, `mia`, `zac`, and `zoe`.

Emotions: `<laugh>`, `<chuckle>`, `<sigh>`, `<cough>`, `<sniffle>`, `<groan>`, `<yawn>`, and `<gasp>`.

Through synthetic data generation and addition, our finetuned model also maintains these voices and emotions. Please visit the default model's card for mor info on voices and emotions.

### Our Model Sample Generations

🎧 Listen to samples generated by Hypa Orpheus-TTS

<div style="margin-top: 20px;">
<table style="width: 100%; border-collapse: collapse;">
  <thead>
    <tr>
        <th style="border: 1px solid #ddd; padding: 8px; width: 30%;">Text Input</th>
        <th style="border: 1px solid #ddd; padding: 8px; width: 40%;">Audio Output</th>
        <th style="border: 1px solid #ddd; padding: 8px; width: 10%;">Language</th>
        <th style="border: 1px solid #ddd; padding: 8px; width: 10%;">Voice</th>
    </tr>
  </thead>
  <tbody>
    <tr>
        <td style="border: 1px solid #ddd; padding: 8px;">I am cooking for guests tomorrow and need to know how to make aioli. Can you give me a step-by-step recipe.</td>
        <td style="border: 1px solid #ddd; padding: 8px;">
            <audio controls style="width: 100%;">
                <source src="https://huggingface.co/hypaai/Hypa_Orpheus-3b-0.1-ft-unsloth-bnb-4bit/resolve/main/assets/Emmanuel_English.wav" type="audio/wav">
            </audio>
        </td>
        <td style="border: 1px solid #ddd; padding: 8px;">English</td>
        <td style="border: 1px solid #ddd; padding: 8px;">Emmanuel</td>
    </tr>
    <tr>
        <td style="border: 1px solid #ddd; padding: 8px;">Ina dafa abinci don bakin gobe kuma ina bukatar sanin yadda ake yin ailoli. Za ka iya ba ni girke-gireken matakan daya bayan daya?</td>
        <td style="border: 1px solid #ddd; padding: 8px;">
            <audio controls style="width: 100%;">
                <source src="https://huggingface.co/hypaai/Hypa_Orpheus-3b-0.1-ft-unsloth-bnb-4bit/resolve/main/assets/Emmanuel_Hausa.wav" type="audio/wav">
            </audio>
        </td>
        <td style="border: 1px solid #ddd; padding: 8px;">Hausa</td>
        <td style="border: 1px solid #ddd; padding: 8px;">Emmanuel</td>
    </tr>
    <tr>
        <td style="border: 1px solid #ddd; padding: 8px;">Ina dafa abinci don bakin gobe kuma ina bukatar sanin yadda ake yin ailoli. Za ka iya ba ni girke-gireken matakan daya bayan daya?</td>
        <td style="border: 1px solid #ddd; padding: 8px;">
            <audio controls style="width: 100%;">
                <source src="https://huggingface.co/hypaai/Hypa_Orpheus-3b-0.1-ft-unsloth-bnb-4bit/resolve/main/assets/Eniola_Hausa.wav" type="audio/wav">
            </audio>
        </td>
        <td style="border: 1px solid #ddd; padding: 8px;">Hausa</td>
        <td style="border: 1px solid #ddd; padding: 8px;">Eniola</td>
    </tr>
    <tr>
        <td style="border: 1px solid #ddd; padding: 8px;">Èmi máa se oúnjẹ fún àwọn àlejò l'ọ́la mo sì nílò láti mọ bí wọn ti ńṣe aioli. Ṣe o lè fún mi ni àwọn ìlànà ìdáná ẹlẹ́sẹẹsẹ?</td>
        <td style="border: 1px solid #ddd; padding: 8px;">
            <audio controls style="width: 100%;">
                <source src="https://huggingface.co/hypaai/Hypa_Orpheus-3b-0.1-ft-unsloth-bnb-4bit/resolve/main/assets/Eniola_Yoruba.wav" type="audio/wav">
            </audio>
        </td>
        <td style="border: 1px solid #ddd; padding: 8px;">Yoruba</td>
        <td style="border: 1px solid #ddd; padding: 8px;">Eniola</td>
    </tr>
    <tr>
        <td style="border: 1px solid #ddd; padding: 8px;">I am cooking for guests tomorrow and need to know how to make aioli. Can you give me a step-by-step recipe.</td>
        <td style="border: 1px solid #ddd; padding: 8px;">
            <audio controls style="width: 100%;">
                <source src="https://huggingface.co/hypaai/Hypa_Orpheus-3b-0.1-ft-unsloth-bnb-4bit/resolve/main/assets/Eniola_English.wav" type="audio/wav">
            </audio>
        </td>
        <td style="border: 1px solid #ddd; padding: 8px;">English</td>
        <td style="border: 1px solid #ddd; padding: 8px;">Eniola</td>
    </tr>
    <tr>
        <td style="border: 1px solid #ddd; padding: 8px;">M na-esi nri maka ndị ọbịa echi ma achọ ịmata otú esi esi aioli. Ị nwere ike inye m usoro ntụziaka?</td>
        <td style="border: 1px solid #ddd; padding: 8px;">
            <audio controls style="width: 100%;">
                <source src="https://huggingface.co/hypaai/Hypa_Orpheus-3b-0.1-ft-unsloth-bnb-4bit/resolve/main/assets/Eniola_Igbo.wav" type="audio/wav">
            </audio>
        </td>
        <td style="border: 1px solid #ddd; padding: 8px;">Igbo</td>
        <td style="border: 1px solid #ddd; padding: 8px;">Eniola</td>
    </tr>
    <tr>
        <td style="border: 1px solid #ddd; padding: 8px;">M na-esi nri maka ndị ọbịa echi ma achọ ịmata otú esi esi aioli. Ị nwere ike inye m usoro ntụziaka?</td>
        <td style="border: 1px solid #ddd; padding: 8px;">
            <audio controls style="width: 100%;">
                <source src="https://huggingface.co/hypaai/Hypa_Orpheus-3b-0.1-ft-unsloth-bnb-4bit/resolve/main/assets/Lovelyn_Igbo.wav" type="audio/wav">
            </audio>
        </td>
        <td style="border: 1px solid #ddd; padding: 8px;">Igbo</td>
        <td style="border: 1px solid #ddd; padding: 8px;">Lovelyn</td>
    </tr>
    <tr>
        <td style="border: 1px solid #ddd; padding: 8px;">I am cooking for guests tomorrow and need to know how to make aioli. Can you give me a step-by-step recipe.</td>
        <td style="border: 1px solid #ddd; padding: 8px;">
            <audio controls style="width: 100%;">
                <source src="https://huggingface.co/hypaai/Hypa_Orpheus-3b-0.1-ft-unsloth-bnb-4bit/resolve/main/assets/Lovelyn_English.wav" type="audio/wav">
            </audio>
        </td>
        <td style="border: 1px solid #ddd; padding: 8px;">English</td>
        <td style="border: 1px solid #ddd; padding: 8px;">Lovelyn</td>
    </tr>
  </tbody>
</table>
</div>

---

## Training Details

### Training Summary

* Base model: canopylabs/orpheus-3b-0.1-ft
* Training engine: Unsloth + LoRA
* LoRA config: r=1024, alpha=1024, dropout=0.0, full attention + FFN adaptation
* Quantization: 4-bit (bnb) for training; final model is highly memory-efficient
* Total steps: 18,014 (1 epoch)
* Batch size: 1 × 4 (grad accum)
* GPU: A100 40GB (max 55% VRAM used)


<div style="margin-top: 20px;">
<table style="border-collapse: collapse;">
  <thead>
    <tr>
        <th style="border: 1px solid #ddd; padding: 8px; text-align: left;">Step</th>
        <th style="border: 1px solid #ddd; padding: 8px; text-align: left;">Training Loss</th>
        <th style="border: 1px solid #ddd; padding: 8px; text-align: left;">Validation Loss</th>
    </tr>
  </thead>
  <tbody>
    <tr>
        <td style="border: 1px solid #ddd; padding: 8px;">5,000</td>
        <td style="border: 1px solid #ddd; padding: 8px;">3.9496</td>
        <td style="border: 1px solid #ddd; padding: 8px;">3.8790</td>
    </tr>
    <tr>
        <td style="border: 1px solid #ddd; padding: 8px;">10,000</td>
        <td style="border: 1px solid #ddd; padding: 8px;">3.8863</td>
        <td style="border: 1px solid #ddd; padding: 8px;">3.79497</td>
    </tr>
    <tr>
        <td style="border: 1px solid #ddd; padding: 8px;">15,000</td>
        <td style="border: 1px solid #ddd; padding: 8px;">3.8544</td>
        <td style="border: 1px solid #ddd; padding: 8px;">3.75323</td>
    </tr>
  </tbody>
</table>
</div>

### Dataset Summary

* Sources:
    * ✅ Manually aligned YouTube transcriptions (aka Random)
    * ✅ Synthetic voice generation from Orpheus TTS
    * ✅ Parallel text-audio pairs for African-English, Igbo, Yoruba, Hausa
* Total Hours: 300+ (multi-accent)
* Key Speakers: 45+ unique voices (see speaker distribution chart below)

![image/png](https://huggingface.co/hypaai/Hypa_Orpheus-3b-0.1-ft-unsloth-bnb-4bit/resolve/main/assets/stats.png)

We plan to open-source the full dataset shortly similar to the [Hypa_Fleurs](https://huggingface.co/datasets/hypaai/Hypa_Fleurs) initiative.

---

## Licensing and Citation

This model is released under an [Open Source License](./LICENSE) (apache-2.0). Please refer to the LICENSE file for full details.

When using this model in your work, please cite both this model as well as the base [`canopylabs/orpheus-3b-0.1-ft`](https://huggingface.co/canopylabs/orpheus-3b-0.1-ft) model as follows:

```bibtex
@misc{canopylabsorpheus,
  title={Orpheus-3b-0.1-ft: A Multilingual Text-to-Speech Model},
  author={Canopy Labs},
  year={2025},
  publisher={Hugging Face},
  howpublished={\url{https://huggingface.co/canopylabs/orpheus-3b-0.1-ft}},
  note={Fine-tuned version of Orpheus for expressive TTS}
}

@misc{hypaorpheus4bit,
  title={Hypa_Orpheus-3b-0.1-ft (LoRA-4bit)},
  author={Hypa AI},
  year={2025},
  note={Fine-tuned Orpheus TTS on African languages},
  url={https://huggingface.co/hypaai/Hypa_Orpheus-3b-0.1-ft-unsloth-bnb-4bit}
}
```

---

## Acknowledgements

- **Canopy Labs Team:** For creating the foundational model and opensourcing it.
- **AfroVoices Experts:** For their translation expertise and high-quality datasets.
- **Community Support:** We thank all supporters, contributors, and users.

---

## Contact and Contributions

For any questions, issues, or contributions, please open an issue in this repository or contact [hypa.ai.ng@gmail.com](mailto:hypa.ai.ng@gmail.com). Contributions are welcome!

---

## Closing Remarks

By making Hypa_Orpheus available, we hope to empower research and development in multilingual speech technologies for African languages.

Hypa AI remains steadfast in its mission to pioneer intelligent solutions that are not just technologically advanced but are also culturally aware, ensuring that the future of AI is as diverse and inclusive as the world it serves.

AfroVoices, a subsidiary of Hypa AI, is dedicated to amplifying African voices, languages, and cultures in the intelligence age. Focused on bridging the digital representation gap, AfroVoices curates datasets and resources for African languages, promoting inclusivity and cultural appreciation in AI technologies. Their mission goes beyond technological innovation, aiming to celebrate the richness of African linguistic diversity on a global stage.

---

## Usage

### Unsloth Inference

Download the nedded packages.

```python
%%capture
import os
if "COLAB_" not in "".join(os.environ.keys()):
    !pip install unsloth
else:
    # Do this only in Colab notebooks! Otherwise use pip install unsloth
    !pip install --no-deps bitsandbytes accelerate xformers==0.0.29.post3 peft trl==0.15.2 triton cut_cross_entropy unsloth_zoo
    !pip install sentencepiece protobuf datasets huggingface_hub hf_transfer
    !pip install --no-deps unsloth
!pip install snac
```

Download the models (both the SNAC encoder/decoder as well as our finetuned Hypa_Orpheus).

```python
import torch
from snac import SNAC
from unsloth import FastLanguageModel

dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.

model, tokenizer = FastLanguageModel.from_pretrained(
    model_name = "hypaai/Hypa_Orpheus-3b-0.1-ft-unsloth-merged_16bit",
    max_seq_length= 2048, # Choose any for long context!
    dtype = dtype,
    load_in_4bit = load_in_4bit,
    #token = "hf_...", # use one if using gated models like meta-llama/Llama-2-7b-hf
)

snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz")
snac_model = snac_model.to("cuda")
```

Create your text prompt, select the voice, and pass through the Model.

```python
prompts = [
    """Mo nífẹ̀ẹ́sí láti ṣe Ph.D sùgbọ́n mi ò ì tíì pinnu ẹ̀ka tí màá ṣe. Àwọn anfaani tí óń dé oríṣiríṣi àwọn olùgbọ́ káàkiri àgbáyé wo ni mo ní""",
]
chosen_voice = "Eniola" # None for single-speaker


FastLanguageModel.for_inference(model) # Enable native 2x faster inference
snac_model.to("cpu")# Moving snac_model cuda to cpu

prompts_ = [(f"{chosen_voice}: " + p) if chosen_voice else p for p in prompts]

all_input_ids = []

for prompt in prompts_:
  input_ids = tokenizer(prompt, return_tensors="pt").input_ids
  all_input_ids.append(input_ids)

start_token = torch.tensor([[ 128259]], dtype=torch.int64) # Start of human
end_tokens = torch.tensor([[128009, 128260]], dtype=torch.int64) # End of text, End of human

all_modified_input_ids = []
for input_ids in all_input_ids:
  modified_input_ids = torch.cat([start_token, input_ids, end_tokens], dim=1) # SOH SOT Text EOT EOH
  all_modified_input_ids.append(modified_input_ids)

all_padded_tensors = []
all_attention_masks = []
max_length = max([modified_input_ids.shape[1] for modified_input_ids in all_modified_input_ids])
for modified_input_ids in all_modified_input_ids:
  padding = max_length - modified_input_ids.shape[1]
  padded_tensor = torch.cat([torch.full((1, padding), 128263, dtype=torch.int64), modified_input_ids], dim=1)
  attention_mask = torch.cat([torch.zeros((1, padding), dtype=torch.int64), torch.ones((1, modified_input_ids.shape[1]), dtype=torch.int64)], dim=1)
  all_padded_tensors.append(padded_tensor)
  all_attention_masks.append(attention_mask)

all_padded_tensors = torch.cat(all_padded_tensors, dim=0)
all_attention_masks = torch.cat(all_attention_masks, dim=0)

input_ids = all_padded_tensors.to("cuda")
attention_mask = all_attention_masks.to("cuda")
generated_ids = model.generate(
      input_ids=input_ids,
      attention_mask=attention_mask,
      max_new_tokens=1200,
      do_sample=True,
      temperature=0.6,
      top_p=0.95,
      repetition_penalty=1.1,
      num_return_sequences=1,
      eos_token_id=128258,
     use_cache = True
  )
token_to_find = 128257
token_to_remove = 128258

token_indices = (generated_ids == token_to_find).nonzero(as_tuple=True)

if len(token_indices[1]) > 0:
    last_occurrence_idx = token_indices[1][-1].item()
    cropped_tensor = generated_ids[:, last_occurrence_idx+1:]
else:
    cropped_tensor = generated_ids

mask = cropped_tensor != token_to_remove

processed_rows = []

for row in cropped_tensor:
    masked_row = row[row != token_to_remove]
    processed_rows.append(masked_row)

code_lists = []

for row in processed_rows:
    row_length = row.size(0)
    new_length = (row_length // 7) * 7
    trimmed_row = row[:new_length]
    trimmed_row = [t - 128266 for t in trimmed_row]
    code_lists.append(trimmed_row)


def redistribute_codes(code_list):
  layer_1 = []
  layer_2 = []
  layer_3 = []
  for i in range((len(code_list)+1)//7):
    layer_1.append(code_list[7*i])
    layer_2.append(code_list[7*i+1]-4096)
    layer_3.append(code_list[7*i+2]-(2*4096))
    layer_3.append(code_list[7*i+3]-(3*4096))
    layer_2.append(code_list[7*i+4]-(4*4096))
    layer_3.append(code_list[7*i+5]-(5*4096))
    layer_3.append(code_list[7*i+6]-(6*4096))
  codes = [torch.tensor(layer_1).unsqueeze(0),
         torch.tensor(layer_2).unsqueeze(0),
         torch.tensor(layer_3).unsqueeze(0)]

  # codes = [c.to("cuda") for c in codes]
  audio_hat = snac_model.decode(codes)
  return audio_hat

my_samples = []
for code_list in code_lists:
  samples = redistribute_codes(code_list)
  my_samples.append(samples)
from IPython.display import display, Audio
if len(prompts) != len(my_samples):
  raise Exception("Number of prompts and samples do not match")
else:
  for i in range(len(my_samples)):
    print(prompts[i])
    samples = my_samples[i]
    display(Audio(samples.detach().squeeze().to("cpu").numpy(), rate=24000))
# Clean up to save RAM
del my_samples,samples
```

### Standard Inference

Download the nedded packages.

```python
%%capture
!pip install snac ipywebrtc
```

Download the Models (SNAC & Hypa_Orpheus)

```python
import torch
from transformers import AutoModelForCausalLM, Trainer, TrainingArguments, AutoTokenizer
from snac import SNAC

# Loads the pre-trained SNAC model and moves it to the CPU.
snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz")
snac_model = snac_model #.to("cpu")

print("We have loaded the Encoder/Decoder model to the cpu, to use vram - use the gpu for faster inference")

# Loading the Orpheus Model and Tokenizer, moving the model to the GPU for faster inference
model_name = "hypaai/Hypa_Orpheus-3b-0.1-ft-unsloth-merged_16bit"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16)
model.cuda()
tokenizer = AutoTokenizer.from_pretrained(model_name)
```

Create Prompt(s) and Select Voice & Emotions as needed.

```python
# List of supported voices in Orpheus-TTS
voices = [
    "Eniola", "tara",   # Female, conversational, clear
    "Moyo", "leah",     # Female, warm, gentle
    "Gift", "jess",     # Female, energetic, youthful
    "Prince", "leo",    # Male, authoritative, deep
    "Emmanuel", "dan",   # Male, friendly, casual
    "Cynthia", "mia",    # Female, professional, articulate
    "Kolade", "zac",    # Male, enthusiastic, dynamic
    "Lovelyn", "zoe"     # Female, calm, soothing
]

# List of supported emotion tags in Orpheus-TTS
emotions = [
    "<laugh>",    # Laughter
    "<chuckle>",  # Soft chuckle
    "<sigh>",     # Sighing
    "<cough>",    # Coughing
    "<sniffle>",  # Sniffling
    "<groan>",    # Groaning
    "<yawn>",     # Yawning
    "<gasp>"      # Gasping
]

# Creating Prompts
prompts = [
    "Hey there my name is Eniola 9000,  and I'm a speech generation model that can sound like a person.",
    # "I've also been taught to understand and produce paralinguistic things like sighing, or chuckling, or yawning!",
    # "I live in San Francisco, and have, uhm let's see, 3 billion 7 hundred ... well, lets just say a lot of parameters.",
]

chosen_voice = "Eniola"  # "tara" # see github for other voices
prompts = [f"{chosen_voice}: " + p for p in prompts] # Creating the prompts (as a batch)
print(prompts)
```

Tokenize prompt(s) into inputIDs, pad, and create attention masks.

```python
# Tokenizing each prompt into input IDs.
all_input_ids = []
for prompt in prompts:
  input_ids = tokenizer(prompt, return_tensors="pt").input_ids
  all_input_ids.append(input_ids)

# Adds special tokens to mark the beginning and end of each prompt
start_token = torch.tensor([[128259]], dtype=torch.int64) # Start of human
end_tokens = torch.tensor([[128009, 128260]], dtype=torch.int64) # End of text, End of human

all_modified_input_ids = []
for input_ids in all_input_ids:
  modified_input_ids = torch.cat([start_token, input_ids, end_tokens], dim=1) # SOH SOT Text EOT EOH
  all_modified_input_ids.append(modified_input_ids)

# Padding All sequences to same length and creating corresponding attention masks
all_padded_tensors = []
all_attention_masks = []
max_length = max([modified_input_ids.shape[1] for modified_input_ids in all_modified_input_ids])
for modified_input_ids in all_modified_input_ids:
  padding = max_length - modified_input_ids.shape[1]
  # Left Padding
  padded_tensor = torch.cat([torch.full((1, padding), 128263, dtype=torch.int64), modified_input_ids], dim=1)
  attention_mask = torch.cat([torch.zeros((1, padding), dtype=torch.int64), torch.ones((1, modified_input_ids.shape[1]), dtype=torch.int64)], dim=1)
  all_padded_tensors.append(padded_tensor)
  all_attention_masks.append(attention_mask)

all_padded_tensors = torch.cat(all_padded_tensors, dim=0)
all_attention_masks = torch.cat(all_attention_masks, dim=0)

# Moving all padded sequences to GPU for Faster computation
input_ids = all_padded_tensors.to("cuda")
attention_mask = all_attention_masks.to("cuda")
```

Generate Output Tokens from the  and Parse output tokens as speech

```python
print("*** Model.generate is slow - see vllm implementation on github for realtime streaming and inference")
print("*** Increase/decrease inference params for more expressive less stable generations")

# Generating Output Tokens
with torch.no_grad():
  generated_ids = model.generate(
      input_ids=input_ids,
      attention_mask=attention_mask,
      max_new_tokens=1200,
      do_sample=True,
      temperature=0.6,
      top_p=0.95,
      repetition_penalty=1.1,
      num_return_sequences=1,
      eos_token_id=128258,
  )

# Processing Generated Tokens (Parse Output as speech)
token_to_find = 128257 # Start of Audio token (relevant output)
token_to_remove = 128258 # End/ Terminal Token (End of Audio/ relevant output)

token_indices = (generated_ids == token_to_find).nonzero(as_tuple=True)
print(token_indices)

# Slices the tensor to exclude unwanted tokens.
if len(token_indices[1]) > 0:
    last_occurrence_idx = token_indices[1][-1].item()
    cropped_tensor = generated_ids[:, last_occurrence_idx+1:]
else:
    cropped_tensor = generated_ids

# mask = cropped_tensor != token_to_remove

# Storing the cleaned-up token sequences#
processed_rows = []
for row in cropped_tensor:
    masked_row = row[row != token_to_remove]
    processed_rows.append(masked_row)

# Preparing (Audio Codes) the token sequences for audio decoding by trimming and adjusting token values.
code_lists = []
for row in processed_rows:
    row_length = row.size(0) #  Determines the length of the token sequence.
    new_length = (row_length // 7) * 7 # Ensures the sequence length is a multiple of 7, as required by the decoder.
    trimmed_row = row[:new_length]
    trimmed_row = [t - 128266 for t in trimmed_row] # Adjusts token values to match the expected input range for the decoder.
    code_lists.append(trimmed_row)
```

Decode Outputs with SNAC Decoder

```python
# Processes the token sequences into the format expected by the SNAC decoder:
def redistribute_codes(code_list):
  """ Reorganizes the flattened token list into three separate layers, adjusting each token's value to align with the decoder's expectations"""
  layer_1 = [] # Coarsest layer
  layer_2 = [] # Intermediate layer
  layer_3 = [] # Finest layer

  num_groups = (len(code_list) + 1) // 7 #Calculate the number of complete 7-token groups in the code_list
  for i in range(num_groups):
    idx = 7 * i # starting index for the current group
    # Layer 1 receives the first token of the group
    layer_1.append(code_list[idx])

    # Layer 2 receives the second token, adjusted by subtracting 4096
    layer_2.append(code_list[idx + 1] - 4096)

    # Layer 3 receives the third and fourth tokens, adjusted by subtracting 8192 and 12288 respectively
    layer_3.append(code_list[idx+2]-(2*4096))
    layer_3.append(code_list[idx+3]-(3*4096))

    # Layer 2 receives the fifth token, adjusted by subtracting 16384
    layer_2.append(code_list[idx+4]-(4*4096))

    # Layer 3 receives the sixth and seventh tokens, adjusted by subtracting 20480 and 24576 respectively
    layer_3.append(code_list[idx+5]-(5*4096))
    layer_3.append(code_list[idx+6]-(6*4096))

  codes = [
        torch.tensor(layer_1).unsqueeze(0), # Shape: (1, len(layer_1))
        torch.tensor(layer_2).unsqueeze(0), # Shape: (1, len(layer_2))
        torch.tensor(layer_3).unsqueeze(0) # Shape: (1, len(layer_3))
        ]  # Convert the lists to PyTorch tensors and add a batch dimension
  audio_hat = snac_model.decode(codes) # Decode the structured codes into an audio waveform using the SNAC model
  return audio_hat

my_samples = []
for code_list in code_lists:
  samples = redistribute_codes(code_list) # Generates audio samples from the processed token sequences
  my_samples.append(samples)

# Display Audio
from IPython.display import display, Audio

if len(prompts) != len(my_samples):
  raise Exception("Number of prompts and samples do not match")
else:
  for i in range(len(my_samples)):
    print(prompts[i])
    samples = my_samples[i]
    display(Audio(samples.detach().squeeze().to("cpu").numpy(), rate=24000))
```

- **Repository:** [N/A]
- **Paper:** [N/A]
- **Demo:** [N/A]

This llama based model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.

[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)