--- license: mit tags: - generated-from-train - instruction-tuned - phi2 - lora - low-resource - fine-tuning datasets: - yahma/alpaca-cleaned base_model: microsoft/phi-2 widget: - text: "### Instruction:\nExplain the concept of gravity.\n\n### Response:" --- # ๐Ÿง  phi2-lora-instruct This is a **LoRA fine-tuned version of Microsoftโ€™s Phi-2** model trained on 500 examples from the [`yahma/alpaca-cleaned`](https://huggingface.co/datasets/yahma/alpaca-cleaned) instruction dataset. ### โœ… Fine-Tuned by: **[howtomakepplragequit](https://huggingface.co/howtomakepplragequit)** โ€” working on scalable, efficient LLM training for real-world instruction-following. --- ## ๐Ÿ—๏ธ Model Architecture - **Base model**: [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) (2.7B parameters) - **Adapter**: LoRA (Low-Rank Adaptation), trained with [PEFT](https://github.com/huggingface/peft) - **Quantization**: 4-bit NF4 via `bitsandbytes` for efficient memory use --- ## ๐Ÿ“ฆ Dataset - [`yahma/alpaca-cleaned`](https://huggingface.co/datasets/yahma/alpaca-cleaned) - Instruction-based Q&A for natural language understanding and generation - Covers topics like science, grammar, everyday tasks, and reasoning --- ## ๐Ÿ› ๏ธ Training Details - **Training platform**: Google Colab (Free T4 GPU) - **Epochs**: 2 - **Batch size**: 2 (with gradient accumulation) - **Optimizer**: AdamW (via Transformers `Trainer`) - **Training time**: ~20โ€“30 mins --- ## ๐Ÿ“ˆ Intended Use - Ideal for **instruction-following tasks**, such as: - Explanation - Summarization - List generation - Creative writing - Can be adapted to **custom domains** (health, code, manufacturing) by adding your own prompts + responses. --- ## ๐Ÿš€ Example Prompt Instruction: Give three tips to improve time management. --- ## ๐Ÿงช Try it Out To use this model in your own project: ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("howtomakepplragequit/phi2-lora-instruct") tokenizer = AutoTokenizer.from_pretrained("howtomakepplragequit/phi2-lora-instruct") input_text = "### Instruction:\nExplain how machine learning works.\n\n### Response:" inputs = tokenizer(input_text, return_tensors="pt").to("cuda") output = model.generate(**inputs, max_new_tokens=100) print(tokenizer.decode(output[0], skip_special_tokens=True))