howtomakepplragequit commited on
Commit
f64d846
·
verified ·
1 Parent(s): b70d09b

updated readme

Browse files
Files changed (1) hide show
  1. README.md +57 -173
README.md CHANGED
@@ -1,199 +1,83 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
 
10
 
 
11
 
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
 
163
- #### Hardware
 
 
164
 
165
- [More Information Needed]
166
 
167
- #### Software
168
 
169
- [More Information Needed]
 
 
170
 
171
- ## Citation [optional]
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
 
175
- **BibTeX:**
 
 
 
 
176
 
177
- [More Information Needed]
178
 
179
- **APA:**
180
 
181
- [More Information Needed]
 
 
 
 
 
182
 
183
- ## Glossary [optional]
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
 
187
- [More Information Needed]
 
188
 
189
- ## More Information [optional]
190
 
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
 
196
 
197
- ## Model Card Contact
 
198
 
199
- [More Information Needed]
 
 
 
 
1
  ---
2
+ license: mit
3
+ tags:
4
+ - generated-from-train
5
+ - instruction-tuned
6
+ - phi2
7
+ - lora
8
+ - low-resource
9
+ - fine-tuning
10
+ datasets:
11
+ - yahma/alpaca-cleaned
12
+ base_model: microsoft/phi-2
13
+ widget:
14
+ - text: "### Instruction:\nExplain the concept of gravity.\n\n### Response:"
15
  ---
16
 
17
+ # 🧠 phi2-lora-instruct
18
 
19
+ This is a **LoRA fine-tuned version of Microsoft’s Phi-2** model trained on 500 examples from the [`yahma/alpaca-cleaned`](https://huggingface.co/datasets/yahma/alpaca-cleaned) instruction dataset.
20
 
21
+ ### ✅ Fine-Tuned by:
22
+ **[howtomakepplragequit](https://huggingface.co/howtomakepplragequit)** — working on scalable, efficient LLM training for real-world instruction-following.
23
 
24
+ ---
25
 
26
+ ## 🏗️ Model Architecture
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
 
28
+ - **Base model**: [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) (2.7B parameters)
29
+ - **Adapter**: LoRA (Low-Rank Adaptation), trained with [PEFT](https://github.com/huggingface/peft)
30
+ - **Quantization**: 4-bit NF4 via `bitsandbytes` for efficient memory use
31
 
32
+ ---
33
 
34
+ ## 📦 Dataset
35
 
36
+ - [`yahma/alpaca-cleaned`](https://huggingface.co/datasets/yahma/alpaca-cleaned)
37
+ - Instruction-based Q&A for natural language understanding and generation
38
+ - Covers topics like science, grammar, everyday tasks, and reasoning
39
 
40
+ ---
41
 
42
+ ## 🛠️ Training Details
43
 
44
+ - **Training platform**: Google Colab (Free T4 GPU)
45
+ - **Epochs**: 2
46
+ - **Batch size**: 2 (with gradient accumulation)
47
+ - **Optimizer**: AdamW (via Transformers `Trainer`)
48
+ - **Training time**: ~20–30 mins
49
 
50
+ ---
51
 
52
+ ## 📈 Intended Use
53
 
54
+ - Ideal for **instruction-following tasks**, such as:
55
+ - Explanation
56
+ - Summarization
57
+ - List generation
58
+ - Creative writing
59
+ - Can be adapted to **custom domains** (health, code, manufacturing) by adding your own prompts + responses.
60
 
61
+ ---
62
 
63
+ ## 🚀 Example Prompt
64
 
65
+ Instruction:
66
+ Give three tips to improve time management.
67
 
68
+ ---
69
 
70
+ ## 🧪 Try it Out
71
 
72
+ To use this model in your own project:
73
 
74
+ ```python
75
+ from transformers import AutoModelForCausalLM, AutoTokenizer
76
 
77
+ model = AutoModelForCausalLM.from_pretrained("howtomakepplragequit/phi2-lora-instruct")
78
+ tokenizer = AutoTokenizer.from_pretrained("howtomakepplragequit/phi2-lora-instruct")
79
 
80
+ input_text = "### Instruction:\nExplain how machine learning works.\n\n### Response:"
81
+ inputs = tokenizer(input_text, return_tensors="pt").to("cuda")
82
+ output = model.generate(**inputs, max_new_tokens=100)
83
+ print(tokenizer.decode(output[0], skip_special_tokens=True))