Update README.md
Browse files
README.md
CHANGED
@@ -55,7 +55,7 @@ Users (both direct and downstream) should be made aware of the risks, biases and
|
|
55 |
## Training Data
|
56 |
|
57 |
The model craters note in the [Github Repository](https://github.com/SJTU-LIT/SynCSE/blob/main/README.md)
|
58 |
-
> We train
|
59 |
|
60 |
|
61 |
## Training Procedure
|
@@ -75,15 +75,6 @@ More information needed
|
|
75 |
# Evaluation
|
76 |
|
77 |
|
78 |
-
## Testing Data, Factors & Metrics
|
79 |
-
|
80 |
-
### Testing Data
|
81 |
-
|
82 |
-
The model craters note in the [associated paper](https://arxiv.org/pdf/2104.08821.pdf)
|
83 |
-
> Our evaluation code for sentence embeddings is based on a modified version of [SentEval](https://github.com/facebookresearch/SentEval). It evaluates sentence embeddings on semantic textual similarity (STS) tasks and downstream transfer tasks.
|
84 |
-
|
85 |
-
For STS tasks, our evaluation takes the "all" setting, and report Spearman's correlation. See [associated paper](https://arxiv.org/pdf/2104.08821.pdf) (Appendix B) for evaluation details.
|
86 |
-
|
87 |
|
88 |
|
89 |
### Factors
|
@@ -108,16 +99,6 @@ More information needed
|
|
108 |
|
109 |
|
110 |
|
111 |
-
# Environmental Impact
|
112 |
-
|
113 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
114 |
-
|
115 |
-
- **Hardware Type:** Nvidia 3090 GPUs with CUDA 11
|
116 |
-
- **Hours used:** More information needed
|
117 |
-
- **Cloud Provider:** More information needed
|
118 |
-
- **Compute Region:** More information needed
|
119 |
-
- **Carbon Emitted:** More information needed
|
120 |
-
|
121 |
# Technical Specifications [optional]
|
122 |
|
123 |
## Model Architecture and Objective
|
@@ -143,11 +124,11 @@ More information needed.
|
|
143 |
**BibTeX:**
|
144 |
|
145 |
```bibtex
|
146 |
-
@
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
}
|
152 |
```
|
153 |
|
@@ -159,13 +140,11 @@ More information needed
|
|
159 |
More information needed
|
160 |
|
161 |
|
162 |
-
|
163 |
-
|
164 |
-
Princeton NLP group in collaboration with Ezi Ozoani and the Hugging Face team.
|
165 |
|
166 |
# Model Card Contact
|
167 |
|
168 |
-
If you have any questions related to the code or the paper, feel free to email
|
169 |
|
170 |
|
171 |
|
@@ -179,9 +158,9 @@ Use the code below to get started with the model.
|
|
179 |
```python
|
180 |
from transformers import AutoTokenizer, AutoModel
|
181 |
|
182 |
-
tokenizer = AutoTokenizer.from_pretrained("
|
183 |
|
184 |
-
model = AutoModel.from_pretrained("
|
185 |
|
186 |
```
|
187 |
</details>
|
|
|
55 |
## Training Data
|
56 |
|
57 |
The model craters note in the [Github Repository](https://github.com/SJTU-LIT/SynCSE/blob/main/README.md)
|
58 |
+
> We use 26.2k generated synthetic train SynCSE-partial-RoBERTa-base.
|
59 |
|
60 |
|
61 |
## Training Procedure
|
|
|
75 |
# Evaluation
|
76 |
|
77 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
|
79 |
|
80 |
### Factors
|
|
|
99 |
|
100 |
|
101 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
# Technical Specifications [optional]
|
103 |
|
104 |
## Model Architecture and Objective
|
|
|
124 |
**BibTeX:**
|
125 |
|
126 |
```bibtex
|
127 |
+
@article{zhang2023contrastive,
|
128 |
+
title={Contrastive Learning of Sentence Embeddings from Scratch},
|
129 |
+
author={Zhang, Junlei and Lan, Zhenzhong and He, Junxian},
|
130 |
+
journal={arXiv preprint arXiv:2305.15077},
|
131 |
+
year={2023}
|
132 |
}
|
133 |
```
|
134 |
|
|
|
140 |
More information needed
|
141 |
|
142 |
|
143 |
+
|
|
|
|
|
144 |
|
145 |
# Model Card Contact
|
146 |
|
147 |
+
If you have any questions related to the code or the paper, feel free to email Junlei (`zhangjunlei@westlake.edu.cn`). If you encounter any problems when using the code, or want to report a bug, you can open an issue. Please try to specify the problem with details so we can help you better and quicker!
|
148 |
|
149 |
|
150 |
|
|
|
158 |
```python
|
159 |
from transformers import AutoTokenizer, AutoModel
|
160 |
|
161 |
+
tokenizer = AutoTokenizer.from_pretrained("sjtu-lit/SynCSE-partial-RoBERTa-base")
|
162 |
|
163 |
+
model = AutoModel.from_pretrained("sjtu-lit/SynCSE-partial-RoBERTa-base")
|
164 |
|
165 |
```
|
166 |
</details>
|