fsg-vit-roffo / demo_inference_imnet.py
groffo
Initial commit of FSG-ViT
8573586
'''
Demo script for applying Feature Selection Gates (FSG) to torchvision Vision Transformers
and running inference on the ImageNet-mini (Imagenette) validation set.
Each image is resized to 224x224 and has 3 RGB channels to be compatible with ViT.
Usage:
demo_inference_imnet.py --checkpoint ./checkpoints/fsg_vit_imagenette_demo.pth
Paper:
https://papers.miccai.org/miccai-2024/316-Paper0410.html
Code:
https://github.com/cosmoimd/feature-selection-gates
Contact:
giorgio.roffo@gmail.com
'''
import warnings
warnings.filterwarnings("ignore")
import os
import sys
import tarfile
import urllib.request
import torch
import psutil
from torchvision.models import vit_b_16, ViT_B_16_Weights
from vit_with_fsg import vit_with_fsg
from torchvision import transforms
from torchvision.datasets import ImageFolder
from torch.utils.data import DataLoader
import torch.nn.functional as F
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
from tqdm import tqdm
import argparse
parser = argparse.ArgumentParser(description="FSG-ViT inference on Imagenette")
parser.add_argument("--checkpoint", type=str, default=None, help="Path to .pth file of trained FSG-ViT model")
args = parser.parse_args()
if __name__ == "__main__":
warnings.filterwarnings("ignore", message="Failed to load image Python extension*")
wrn = False
print(f"\nπŸ“Œ To run this script:\n"
f" β–Ά Without checkpoint: python {os.path.basename(__file__)}\n"
f" β–Ά With checkpoint: python {os.path.basename(__file__)} --checkpoint path/to/model.pth\n")
# Device and system info
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"\nπŸ–₯️ Using device: {device}")
if device.type == "cuda":
print(f"πŸš€ CUDA device: {torch.cuda.get_device_name(0)}")
print(f"πŸ’Ύ GPU memory total: {torch.cuda.get_device_properties(0).total_memory / (1024 ** 3):.2f} GB")
print(f"🧠 System RAM: {psutil.virtual_memory().total / (1024 ** 3):.2f} GB")
print("\nπŸ“₯ Loading pretrained ViT backbone from torchvision...")
backbone = vit_b_16(weights=ViT_B_16_Weights.DEFAULT)
print("πŸ”§ Wrapping with Feature Selection Gates (FSG)...")
model = vit_with_fsg(backbone).to(device)
if args.checkpoint is not None:
print(f"πŸ“‚ Loading model weights from: {args.checkpoint}")
model.load_state_dict(torch.load(args.checkpoint, map_location=device))
else:
wrn = True
print("\n⚠️ No checkpoint provided. Evaluating randomly initialized model! πŸ§ͺ\n")
print("❗ Note: The model has not been trained. Results will reflect a randomly initialized backbone.")
model.eval()
print("πŸ“š Loading Imagenette validation set (224x224 RGB)...")
imagenette_path = "./imagenette2-160/val"
if not os.path.exists(imagenette_path):
print("πŸ“¦ Downloading Imagenette...")
url = "https://s3.amazonaws.com/fast-ai-imageclas/imagenette2-160.tgz"
tgz_path = "imagenette2-160.tgz"
urllib.request.urlretrieve(url, tgz_path)
print("πŸ“‚ Extracting Imagenette dataset...")
with tarfile.open(tgz_path, "r:gz") as tar:
tar.extractall()
os.remove(tgz_path)
print("βœ… Dataset ready.")
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5]*3, std=[0.5]*3)
])
dataset = ImageFolder(root=imagenette_path, transform=transform)
dataloader = DataLoader(dataset, batch_size=32, shuffle=False)
y_true = []
y_pred = []
print("πŸ§ͺ Running inference on Imagenette validation set using FSG-ViT-B-16 (code by G. Roffo)...\n\n")
with torch.no_grad():
for images, labels in tqdm(dataloader, desc="πŸ” Inference progress", ncols=100):
images = images.to(device)
labels = labels.to(device)
outputs = model(images)
preds = torch.argmax(F.softmax(outputs, dim=1), dim=1)
y_true.extend(labels.cpu().tolist())
y_pred.extend(preds.cpu().tolist())
print("βœ… Inference completed.")
acc = accuracy_score(y_true, y_pred)
prec = precision_score(y_true, y_pred, average='macro', zero_division=0)
rec = recall_score(y_true, y_pred, average='macro', zero_division=0)
f1 = f1_score(y_true, y_pred, average='macro', zero_division=0)
if wrn == True:
print("\n⚠️ No checkpoint provided. Evaluated randomly initialized model! πŸ§ͺ\n")
print(f"\nπŸ“Œ To run this script:\n"
f" β–Ά With checkpoint: python {os.path.basename(__file__)} --checkpoint path/to/model.pth\n")
print(f"πŸ“Š Accuracy: {acc * 100:.2f}%")
print(f"πŸ“Š Precision: {prec * 100:.2f}%")
print(f"πŸ“Š Recall: {rec * 100:.2f}%")
print(f"πŸ“Š F1 Score: {f1 * 100:.2f}%")