File size: 4,352 Bytes
8573586 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 |
'''
Demo script for applying Feature Selection Gates (FSG) to torchvision Vision Transformers
and running inference on the MNIST test set.
Each MNIST image is resized to 224x224 and converted to 3 channels to be compatible with ViT.
Usage:
demo_inference_mnist.py --checkpoint ./checkpoints/fsg_vit_mnist_demo.pth
Paper:
https://papers.miccai.org/miccai-2024/316-Paper0410.html
Code:
https://github.com/cosmoimd/feature-selection-gates
Contact:
giorgio.roffo@gmail.com
'''
import torch
import psutil
import argparse
import warnings
from torchvision.models import vit_b_16, ViT_B_16_Weights
from vit_with_fsg import vit_with_fsg
from torchvision.datasets import MNIST
from torchvision import transforms
from torch.utils.data import DataLoader
import torch.nn.functional as F
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
from tqdm import tqdm
import os
warnings.filterwarnings("ignore")
parser = argparse.ArgumentParser(description="FSG-ViT inference on MNIST")
parser.add_argument("--checkpoint", type=str, default=None, help="Path to .pth file of trained FSG-ViT model")
args = parser.parse_args()
if __name__ == "__main__":
warnings.filterwarnings("ignore", message="Failed to load image Python extension*")
wrn = False
print(f"\nπ To run this script:\n"
f" βΆ Without checkpoint: python {os.path.basename(__file__)}\n"
f" βΆ With checkpoint: python {os.path.basename(__file__)} --checkpoint path/to/model.pth\n")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"\nπ₯οΈ Using device: {device}")
if device.type == "cuda":
print(f"π CUDA device: {torch.cuda.get_device_name(0)}")
print(f"πΎ GPU memory total: {torch.cuda.get_device_properties(0).total_memory / (1024 ** 3):.2f} GB")
print(f"π§ System RAM: {psutil.virtual_memory().total / (1024 ** 3):.2f} GB")
print("\nπ₯ Loading pretrained ViT backbone from torchvision...")
backbone = vit_b_16(weights=ViT_B_16_Weights.DEFAULT)
print("π§ Wrapping with Feature Selection Gates (FSG)...")
model = vit_with_fsg(backbone).to(device)
if args.checkpoint is not None:
print(f"π Loading model weights from: {args.checkpoint}")
model.load_state_dict(torch.load(args.checkpoint, map_location=device))
else:
wrn = True
print("\nβ οΈ No checkpoint provided. Evaluating randomly initialized model! π§ͺ\n")
print("β Note: The model has not been trained. Results will reflect a randomly initialized backbone.")
model.eval()
print("π Loading MNIST test set (resized to 224x224, 3-channel)...")
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.Grayscale(num_output_channels=3),
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
])
test_dataset = MNIST(root="./data", train=False, download=True, transform=transform)
test_loader = DataLoader(test_dataset, batch_size=32, shuffle=False)
y_true = []
y_pred = []
print("π§ͺ Running inference on MNIST test set using FSG-ViT-B-16 (code by G. Roffo)...")
with torch.no_grad():
for images, labels in tqdm(test_loader, desc="π Inference progress", ncols=100):
images = images.to(device)
labels = labels.to(device)
outputs = model(images)
preds = torch.argmax(F.softmax(outputs, dim=1), dim=1)
y_true.extend(labels.cpu().tolist())
y_pred.extend(preds.cpu().tolist())
print("β
Inference completed.")
acc = accuracy_score(y_true, y_pred)
prec = precision_score(y_true, y_pred, average='macro', zero_division=0)
rec = recall_score(y_true, y_pred, average='macro', zero_division=0)
f1 = f1_score(y_true, y_pred, average='macro', zero_division=0)
if wrn == True:
print("\nβ οΈ No checkpoint provided. Evaluated randomly initialized model! π§ͺ\n")
print(f"\nπ To run this script:\n"
f" βΆ With checkpoint: python {os.path.basename(__file__)} --checkpoint path/to/model.pth\n")
print(f"π Accuracy: {acc * 100:.2f}%")
print(f"π Precision: {prec * 100:.2f}%")
print(f"π Recall: {rec * 100:.2f}%")
print(f"π F1 Score: {f1 * 100:.2f}%")
|