--- license: cc-by-nc-sa-4.0 base_model: Qwen/Qwen2.5-1.5B-Instruct language: - en pipeline_tag: text-generation tags: - 3d-scenes - indoor-scenes - furniture - fine-tuned - qwen2.5 - respace - sg-llm - spatial-reasoning - text-to-3d - scene-synthesis - computer-graphics --- # respace-sg-llm-1.5b Fine-tuned version of [Qwen/Qwen2.5-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct) for 3D indoor scene synthesis coined SG-LLM. Mor information about ReSpace: http://respace.mnbucher.com For detailed usage instructions, training details, and examples, see the associated repository: https://github.com/GradientSpaces/respace ## Raw Usage It is not recommended to use SG-LLM separately without the scaffolding for addition/removal that is provided in the ReSpace repository. However, if you want to play around with model capabilities and limitations, you can use it via: ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("gradient-spaces/respace-sg-llm-1.5b") tokenizer = AutoTokenizer.from_pretrained("gradient-spaces/respace-sg-llm-1.5b") ``` ## Citation If you use SG-LLM, the ReSpace framework, or if you found our work useful, please cite us as follows: ```bibtex @article{bucher2025respace, title={ReSpace: Text-Driven 3D Scene Synthesis and Editing with Preference Alignment}, author={Bucher, Martin JJ and Armeni, Iro}, journal={arXiv preprint arXiv:2506.02459}, year={2025} } ```