File size: 1,488 Bytes
7ca12a7 6741887 7ca12a7 dac3e92 7ca12a7 0c8351b dac3e92 7ca12a7 0c8351b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
---
license: cc-by-nc-sa-4.0
base_model: Qwen/Qwen2.5-1.5B-Instruct
language:
- en
pipeline_tag: text-generation
tags:
- 3d-scenes
- indoor-scenes
- furniture
- fine-tuned
- qwen2.5
- respace
- sg-llm
- spatial-reasoning
- text-to-3d
- scene-synthesis
- computer-graphics
---
# respace-sg-llm-1.5b
Fine-tuned version of [Qwen/Qwen2.5-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct) for 3D indoor scene synthesis coined SG-LLM.
Mor information about ReSpace: http://respace.mnbucher.com
For detailed usage instructions, training details, and examples, see the associated repository: https://github.com/GradientSpaces/respace
## Raw Usage
It is not recommended to use SG-LLM separately without the scaffolding for addition/removal that is provided in the ReSpace repository. However, if you want to play around with model capabilities and limitations, you can use it via:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("gradient-spaces/respace-sg-llm-1.5b")
tokenizer = AutoTokenizer.from_pretrained("gradient-spaces/respace-sg-llm-1.5b")
```
## Citation
If you use SG-LLM, the ReSpace framework, or if you found our work useful, please cite us as follows:
```bibtex
@article{bucher2025respace,
title={ReSpace: Text-Driven 3D Scene Synthesis and Editing with Preference Alignment},
author={Bucher, Martin JJ and Armeni, Iro},
journal={arXiv preprint arXiv:2506.02459},
year={2025}
}
``` |