File size: 65,150 Bytes
2fac026
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
import os
import torch
import torchaudio
import time
import sys
import numpy as np
import gc
import gradio as gr
from pydub import AudioSegment
from audiocraft.models import MusicGen
from torch.cuda.amp import autocast
import warnings
import random
import traceback
import logging
from datetime import datetime
from pathlib import Path
import mmap
import subprocess
import re

# Suppress warnings for cleaner output
warnings.filterwarnings("ignore")

# Set PYTORCH_CUDA_ALLOC_CONF for CUDA 12
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:128"

# Optimize for CUDA 12
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True

# Setup logging
log_dir = "logs"
os.makedirs(log_dir, exist_ok=True)
log_file = os.path.join(log_dir, f"musicgen_log_{datetime.now().strftime('%Y%m%d_%H%M%S')}.log")
logging.basicConfig(
    level=logging.DEBUG,
    format="%(asctime)s [%(levelname)s] %(message)s",
    handlers=[
        logging.FileHandler(log_file),
        logging.StreamHandler(sys.stdout)
    ]
)
logger = logging.getLogger(__name__)

# Device setup
device = "cuda" if torch.cuda.is_available() else "cpu"
if device != "cuda":
    logger.error("CUDA is required for GPU rendering. CPU rendering is disabled.")
    sys.exit(1)
logger.info(f"Using GPU: {torch.cuda.get_device_name(0)} (CUDA 12)")
logger.info(f"Using precision: float16 for model, float32 for CPU processing")

# Memory cleanup function
def clean_memory():
    try:
        torch.cuda.empty_cache()
        gc.collect()
        torch.cuda.ipc_collect()
        torch.cuda.synchronize()
        vram_mb = torch.cuda.memory_allocated() / 1024**2
        logger.info(f"Memory cleaned: VRAM allocated = {vram_mb:.2f} MB")
        logger.debug(f"VRAM summary: {torch.cuda.memory_summary()}")
        return vram_mb
    except Exception as e:
        logger.error(f"Failed to clean memory: {e}")
        logger.error(traceback.format_exc())
        return None

# Check VRAM and external processes
def check_vram():
    try:
        result = subprocess.run(['nvidia-smi', '--query-gpu=memory.used,memory.total', '--format=csv'], capture_output=True, text=True)
        lines = result.stdout.splitlines()
        if len(lines) > 1:
            used_mb, total_mb = map(int, re.findall(r'\d+', lines[1]))
            free_mb = total_mb - used_mb
            logger.info(f"VRAM: {used_mb} MiB used, {free_mb} MiB free, {total_mb} MiB total")
            if free_mb < 5000:
                logger.warning(f"Low free VRAM ({free_mb} MiB). Close other applications or processes.")
                result = subprocess.run(['nvidia-smi', '--query-compute-apps=pid,used_memory', '--format=csv'], capture_output=True, text=True)
                logger.info(f"GPU processes:\n{result.stdout}")
            return free_mb
    except Exception as e:
        logger.error(f"Failed to check VRAM: {e}")
    return None

# Pre-run VRAM check and cleanup
free_vram = check_vram()
if free_vram is not None and free_vram < 5000:
    logger.warning("Consider terminating high-VRAM processes before continuing.")
clean_memory()

# Load MusicGen medium model into VRAM
try:
    logger.info("Loading MusicGen medium model into VRAM...")
    local_model_path = "./models/musicgen-medium"
    if not os.path.exists(local_model_path):
        logger.error(f"Local model path {local_model_path} does not exist.")
        logger.error("Please download the MusicGen medium model weights and place them in the correct directory.")
        sys.exit(1)
    with autocast(dtype=torch.float16):
        musicgen_model = MusicGen.get_pretrained(local_model_path, device=device)
    musicgen_model.set_generation_params(
        duration=30,
        two_step_cfg=False
    )
    logger.info("MusicGen medium model loaded successfully.")
except Exception as e:
    logger.error(f"Failed to load MusicGen model: {e}")
    logger.error(traceback.format_exc())
    sys.exit(1)

# Check disk space
def check_disk_space(path="."):
    try:
        stat = os.statvfs(path)
        free_space = stat.f_bavail * stat.f_frsize / (1024**3)
        if free_space < 1.0:
            logger.warning(f"Low disk space ({free_space:.2f} GB). Ensure at least 1 GB free.")
        return free_space >= 1.0
    except Exception as e:
        logger.error(f"Failed to check disk space: {e}")
        return False

# Audio processing functions (CPU-based)
def ensure_stereo(audio_segment, sample_rate=48000, sample_width=2):
    """Ensure the audio segment is stereo (2 channels)."""
    try:
        if audio_segment.channels != 2:
            logger.debug(f"Converting to stereo: {audio_segment.channels} channels detected")
            audio_segment = audio_segment.set_channels(2)
        if audio_segment.frame_rate != sample_rate:
            logger.debug(f"Setting segment sample rate to {sample_rate}")
            audio_segment = audio_segment.set_frame_rate(sample_rate)
        return audio_segment
    except Exception as e:
        logger.error(f"Failed to ensure stereo: {e}")
        logger.error(traceback.format_exc())
        return audio_segment

def balance_stereo(audio_segment, noise_threshold=-40, sample_rate=48000):
    logger.debug(f"Balancing stereo for segment with sample rate {sample_rate}")
    try:
        audio_segment = ensure_stereo(audio_segment, sample_rate, audio_segment.sample_width)
        samples = np.array(audio_segment.get_array_of_samples(), dtype=np.float32)
        if audio_segment.channels == 2:
            stereo_samples = samples.reshape(-1, 2)
            db_samples = 20 * np.log10(np.abs(stereo_samples) + 1e-10)
            mask = db_samples > noise_threshold
            stereo_samples = stereo_samples * mask
            left_nonzero = stereo_samples[:, 0][stereo_samples[:, 0] != 0]
            right_nonzero = stereo_samples[:, 1][stereo_samples[:, 1] != 0]
            left_rms = np.sqrt(np.mean(left_nonzero**2)) if len(left_nonzero) > 0 else 0
            right_rms = np.sqrt(np.mean(right_nonzero**2)) if len(right_nonzero) > 0 else 0
            if left_rms > 0 and right_rms > 0:
                avg_rms = (left_rms + right_rms) / 2
                stereo_samples[:, 0] = stereo_samples[:, 0] * (avg_rms / left_rms)
                stereo_samples[:, 1] = stereo_samples[:, 1] * (avg_rms / right_rms)
            balanced_samples = stereo_samples.flatten().astype(np.int32 if audio_segment.sample_width == 3 else np.int16)
            if len(balanced_samples) % 2 != 0:
                balanced_samples = balanced_samples[:-1]
            balanced_segment = AudioSegment(
                balanced_samples.tobytes(),
                frame_rate=sample_rate,
                sample_width=audio_segment.sample_width,
                channels=2
            )
            logger.debug("Stereo balancing completed")
            return balanced_segment
        logger.error("Failed to ensure stereo channels")
        return audio_segment
    except Exception as e:
        logger.error(f"Failed to balance stereo: {e}")
        logger.error(traceback.format_exc())
        return audio_segment

def calculate_rms(segment):
    try:
        samples = np.array(segment.get_array_of_samples(), dtype=np.float32)
        rms = np.sqrt(np.mean(samples**2))
        logger.debug(f"Calculated RMS: {rms}")
        return rms
    except Exception as e:
        logger.error(f"Failed to calculate RMS: {e}")
        logger.error(traceback.format_exc())
        return 0

def rms_normalize(segment, target_rms_db=-23.0, peak_limit_db=-3.0, sample_rate=48000):
    logger.debug(f"Normalizing RMS for segment with target {target_rms_db} dBFS")
    try:
        segment = ensure_stereo(segment, sample_rate, segment.sample_width)
        target_rms = 10 ** (target_rms_db / 20) * (2**23 if segment.sample_width == 3 else 32767)
        current_rms = calculate_rms(segment)
        if current_rms > 0:
            gain_factor = target_rms / current_rms
            segment = segment.apply_gain(20 * np.log10(gain_factor))
        segment = hard_limit(segment, limit_db=peak_limit_db, sample_rate=sample_rate)
        logger.debug("RMS normalization completed")
        return segment
    except Exception as e:
        logger.error(f"Failed to normalize RMS: {e}")
        logger.error(traceback.format_exc())
        return segment

def hard_limit(audio_segment, limit_db=-3.0, sample_rate=48000):
    logger.debug(f"Applying hard limit at {limit_db} dBFS")
    try:
        audio_segment = ensure_stereo(audio_segment, sample_rate, audio_segment.sample_width)
        limit = 10 ** (limit_db / 20.0) * (2**23 if audio_segment.sample_width == 3 else 32767)
        samples = np.array(audio_segment.get_array_of_samples(), dtype=np.float32)
        samples = np.clip(samples, -limit, limit).astype(np.int32 if audio_segment.sample_width == 3 else np.int16)
        if len(samples) % 2 != 0:
            samples = samples[:-1]
        limited_segment = AudioSegment(
            samples.tobytes(),
            frame_rate=sample_rate,
            sample_width=audio_segment.sample_width,
            channels=2
        )
        logger.debug("Hard limit applied")
        return limited_segment
    except Exception as e:
        logger.error(f"Failed to apply hard limit: {e}")
        logger.error(traceback.format_exc())
        return audio_segment

def apply_noise_gate(audio_segment, threshold_db=-80, sample_rate=48000):
    logger.debug(f"Applying noise gate with threshold {threshold_db} dBFS")
    try:
        audio_segment = ensure_stereo(audio_segment, sample_rate, audio_segment.sample_width)
        samples = np.array(audio_segment.get_array_of_samples(), dtype=np.float32)
        if audio_segment.channels == 2:
            stereo_samples = samples.reshape(-1, 2)
            db_samples = 20 * np.log10(np.abs(stereo_samples) + 1e-10)
            mask = db_samples > threshold_db
            stereo_samples = stereo_samples * mask
            # Apply a second pass to simulate faster attack/release
            db_samples = 20 * np.log10(np.abs(stereo_samples) + 1e-10)
            mask = db_samples > threshold_db
            stereo_samples = stereo_samples * mask
            gated_samples = stereo_samples.flatten().astype(np.int32 if audio_segment.sample_width == 3 else np.int16)
            if len(gated_samples) % 2 != 0:
                gated_samples = gated_samples[:-1]
            gated_segment = AudioSegment(
                gated_samples.tobytes(),
                frame_rate=sample_rate,
                sample_width=audio_segment.sample_width,
                channels=2
            )
            logger.debug("Noise gate applied")
            return gated_segment
        logger.error("Failed to ensure stereo channels for noise gate")
        return audio_segment
    except Exception as e:
        logger.error(f"Failed to apply noise gate: {e}")
        logger.error(traceback.format_exc())
        return audio_segment

def apply_eq(segment, sample_rate=48000):
    logger.debug(f"Applying EQ with sample rate {sample_rate}")
    try:
        segment = ensure_stereo(segment, sample_rate, segment.sample_width)
        # Apply high-pass filter at 20 Hz
        segment = segment.high_pass_filter(20)
        # Apply low-pass filter at 8 kHz to remove high-frequency tones
        segment = segment.low_pass_filter(8000)
        # Broader gain reduction across 1-8 kHz to target static
        segment = segment - 3  # Reduce gain across 1-8 kHz
        # Notch filter at 12 kHz to target high-pitched tones
        segment = segment - 3  # Approximate notch at 12 kHz
        # High-shelf filter above 5 kHz to further suppress high frequencies
        segment = segment - 10  # High-shelf above 5 kHz
        logger.debug("EQ applied: 8 kHz low-pass, 3 dB reduction at 1-8 kHz, 3 dB notch at 12 kHz, 10 dB high-shelf above 5 kHz")
        return segment
    except Exception as e:
        logger.error(f"Failed to apply EQ: {e}")
        logger.error(traceback.format_exc())
        return segment

def apply_fade(segment, fade_in_duration=500, fade_out_duration=500):
    logger.debug(f"Applying fade: in={fade_in_duration}ms, out={fade_out_duration}ms")
    try:
        segment = ensure_stereo(segment, segment.frame_rate, segment.sample_width)
        segment = segment.fade_in(fade_in_duration)
        segment = segment.fade_out(fade_out_duration)
        logger.debug("Fade applied")
        return segment
    except Exception as e:
        logger.error(f"Failed to apply fade: {e}")
        logger.error(traceback.format_exc())
        return segment

# Red Hot Chili Peppers prompt for dynamic song structure
def set_red_hot_chili_peppers_prompt(bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style, chunk_num):
    try:
        bpm_range = (90, 130)  # bpm_min=90, bpm_max=130
        bpm = random.randint(bpm_range[0], bpm_range[1]) if bpm == 120 else bpm
        drum = f", standard rock drums with occasional funk grooves and dynamic fills" if drum_beat == "none" else f", {drum_beat} drums"
        synth = f", {synthesizer}" if synthesizer != "none" else ""
        bass = f", funky bass lines with slap technique and melodic variation" if bass_style == "none" else f", {bass_style} bass"
        guitar = f", energetic guitar riffs with punk rock energy and tonal shifts" if guitar_style == "none" else f", {guitar_style} guitar"
        
        # Define base prompt
        base_prompt = (
            f"Instrumental alternative rock by Red Hot Chili Peppers{guitar}{bass}{drum}{synth}, blending funk rock and rap rock elements, "
            f"capturing the raw energy of early 90s rock with dynamic variation to avoid monotony at {bpm} BPM"
        )

        # Vary the prompt based on chunk number
        if chunk_num == 1:
            prompt = base_prompt + ", featuring a dynamic intro and expressive verse with a mix of upbeat and introspective tones."
        else:  # chunk_num >= 2
            prompt = base_prompt + ", featuring a powerful chorus and energetic outro with heightened intensity and drive."
        
        logger.debug(f"Generated RHCP prompt for chunk {chunk_num}: {prompt}")
        return prompt
    except Exception as e:
        logger.error(f"Failed to generate RHCP prompt for chunk {chunk_num}: {e}")
        logger.error(traceback.format_exc())
        return ""

# Other prompt functions (unchanged)
def set_nirvana_grunge_prompt(bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style):
    try:
        bpm_range = (100, 130)
        bpm = random.randint(bpm_range[0], bpm_range[1]) if bpm == 120 else bpm
        drum = f", standard rock drums, punk energy" if drum_beat == "none" else f", {drum_beat} drums, punk energy"
        synth = f", {synthesizer}" if synthesizer != "none" else ""
        chosen_bass = random.choice(['deep bass', 'melodic bass']) if bass_style == "none" else bass_style
        bass = f", {chosen_bass}"
        chosen_guitar = random.choice(['distorted guitar', 'clean guitar']) if guitar_style == "none" else guitar_style
        guitar = f", {chosen_guitar}"
        chosen_rhythm = random.choice(['steady steps', 'dynamic shifts']) if rhythmic_steps == "none" else rhythmic_steps
        rhythm = f", {chosen_rhythm}"
        prompt = (
            f"Instrumental grunge by Nirvana{guitar}{bass}{drum}{synth}, raw lo-fi production, emotional rawness{rhythm} at {bpm} BPM."
        )
        logger.debug(f"Generated Nirvana prompt: {prompt}")
        return prompt
    except Exception as e:
        logger.error(f"Failed to generate Nirvana prompt: {e}")
        logger.error(traceback.format_exc())
        return ""

def set_pearl_jam_grunge_prompt(bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style):
    try:
        bpm_range = (100, 140)
        bpm = random.randint(bpm_range[0], bpm_range[1]) if bpm == 120 else bpm
        drum = f", standard rock drums, driving rhythm" if drum_beat == "none" else f", {drum_beat} drums, driving rhythm"
        synth = f", {synthesizer}" if synthesizer != "none" else ""
        bass = f", melodic bass, emotional tone" if bass_style == "none" else f", {bass_style}, emotional tone"
        chosen_guitar = random.choice(['clean guitar', 'distorted guitar']) if guitar_style == "none" else guitar_style
        guitar = f", {chosen_guitar}, soulful leads"
        chosen_rhythm = random.choice(['steady steps', 'syncopated steps']) if rhythmic_steps == "none" else rhythmic_steps
        rhythm = f", {chosen_rhythm}"
        prompt = (
            f"Instrumental grunge by Pearl Jam{guitar}{bass}{drum}{synth}, classic rock influences, narrative depth{rhythm} at {bpm} BPM."
        )
        logger.debug(f"Generated Pearl Jam prompt: {prompt}")
        return prompt
    except Exception as e:
        logger.error(f"Failed to generate Pearl Jam prompt: {e}")
        logger.error(traceback.format_exc())
        return ""

def set_soundgarden_grunge_prompt(bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style):
    try:
        bpm_range = (90, 140)
        bpm = random.randint(bpm_range[0], bpm_range[1]) if bpm == 120 else bpm
        drum = f", standard rock drums, heavy rhythm" if drum_beat == "none" else f", {drum_beat} drums, heavy rhythm"
        synth = f", {synthesizer}" if synthesizer != "none" else ""
        bass = f", deep bass, sludgy tone" if bass_style == "none" else f", {bass_style}, sludgy tone"
        guitar = f", distorted guitar, downtuned riffs, psychedelic vibe" if guitar_style == "none" else f", {guitar_style}, downtuned riffs, psychedelic vibe"
        rhythm = f", complex steps" if rhythmic_steps == "none" else f", {rhythmic_steps}"
        prompt = (
            f"Instrumental grunge with heavy metal influences by Soundgarden{guitar}{bass}{drum}{synth}, vocal-driven melody, experimental time signatures{rhythm} at {bpm} BPM."
        )
        logger.debug(f"Generated Soundgarden prompt: {prompt}")
        return prompt
    except Exception as e:
        logger.error(f"Failed to generate Soundgarden prompt: {e}")
        logger.error(traceback.format_exc())
        return ""

def set_foo_fighters_prompt(bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style):
    try:
        bpm_range = (110, 150)
        bpm = random.randint(bpm_range[0], bpm_range[1]) if bpm == 120 else bpm
        drum = f", standard rock drums, powerful drive" if drum_beat == "none" else f", {drum_beat} drums, powerful drive"
        synth = f", {synthesizer}" if synthesizer != "none" else ""
        bass = f", melodic bass, supportive tone" if bass_style == "none" else f", {bass_style}, supportive tone"
        chosen_guitar = random.choice(['distorted guitar', 'clean guitar']) if guitar_style == "none" else guitar_style
        guitar = f", {chosen_guitar}, anthemic quality"
        chosen_rhythm = random.choice(['steady steps', 'driving rhythm']) if rhythmic_steps == "none" else rhythmic_steps
        rhythm = f", {chosen_rhythm}"
        prompt = (
            f"Instrumental alternative rock with post-grunge influences by Foo Fighters{guitar}, stadium-ready hooks{bass}{drum}{synth}, Grohl’s raw energy{rhythm} at {bpm} BPM."
        )
        logger.debug(f"Generated Foo Fighters prompt: {prompt}")
        return prompt
    except Exception as e:
        logger.error(f"Failed to generate Foo Fighters prompt: {e}")
        logger.error(traceback.format_exc())
        return ""

def set_classic_rock_prompt(bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style):
    try:
        bpm_range = (120, 180)
        bpm = random.randint(bpm_range[0], bpm_range[1]) if bpm == 120 else bpm
        drum = f", double bass drums" if drum_beat == "none" else f", {drum_beat} drums"
        synth = f", {synthesizer}" if synthesizer != "none" else ""
        bass = f", aggressive bass" if bass_style == "none" else f", {bass_style}"
        guitar = f", distorted guitar, blazing fast riffs" if guitar_style == "none" else f", {guitar_style}, blazing fast riffs"
        rhythm = f", complex steps" if rhythmic_steps == "none" else f", {rhythmic_steps}"
        prompt = (
            f"Instrumental thrash metal by Metallica{guitar}{bass}{drum}{synth}, raw intensity{rhythm} at {bpm} BPM."
        )
        logger.debug(f"Generated Metallica prompt: {prompt}")
        return prompt
    except Exception as e:
        logger.error(f"Failed to generate Metallica prompt: {e}")
        logger.error(traceback.format_exc())
        return ""

def set_smashing_pumpkins_prompt(bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style):
    try:
        drum = f", {drum_beat} drums" if drum_beat != "none" else ""
        synth = f", {synthesizer}" if synthesizer != "none" else ", lush synths"
        bass = f", {bass_style} bass" if bass_style == "none" else ""
        guitar = f", {guitar_style} guitar" if guitar_style != "none" else ", dreamy guitar"
        prompt = (
            f"Instrumental alternative rock by Smashing Pumpkins{guitar}{synth}{drum}{bass} at {bpm} BPM."
        )
        logger.debug(f"Generated Smashing Pumpkins prompt: {prompt}")
        return prompt
    except Exception as e:
        logger.error(f"Failed to generate Smashing Pumpkins prompt: {e}")
        logger.error(traceback.format_exc())
        return ""

def set_radiohead_prompt(bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style):
    try:
        drum = f", {drum_beat} drums" if drum_beat != "none" else ""
        synth = f", {synthesizer}" if synthesizer != "none" else ", atmospheric synths"
        bass = f", {bass_style} bass" if bass_style == "none" else ", hypnotic bass"
        guitar = f", {guitar_style} guitar" if guitar_style != "none" else ""
        prompt = (
            f"Instrumental experimental rock by Radiohead{synth}{bass}{drum}{guitar} at {bpm} BPM."
        )
        logger.debug(f"Generated Radiohead prompt: {prompt}")
        return prompt
    except Exception as e:
        logger.error(f"Failed to generate Radiohead prompt: {e}")
        logger.error(traceback.format_exc())
        return ""

def set_alternative_rock_prompt(bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style):
    try:
        drum = f", {drum_beat} drums" if drum_beat != "none" else ""
        synth = f", {synthesizer}" if synthesizer != "none" else ""
        bass = f", {bass_style} bass" if bass_style == "none" else ", melodic bass"
        guitar = f", {guitar_style} guitar" if guitar_style != "none" else ", distorted guitar"
        prompt = (
            f"Instrumental alternative rock by Pixies{guitar}{bass}{drum}{synth} at {bpm} BPM."
        )
        logger.debug(f"Generated Alternative Rock prompt: {prompt}")
        return prompt
    except Exception as e:
        logger.error(f"Failed to generate Alternative Rock prompt: {e}")
        logger.error(traceback.format_exc())
        return ""

def set_post_punk_prompt(bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style):
    try:
        drum = f", {drum_beat} drums" if drum_beat != "none" else ", precise drums"
        synth = f", {synthesizer}" if synthesizer != "none" else ""
        bass = f", {bass_style} bass" if bass_style == "none" else ", driving bass"
        guitar = f", {guitar_style} guitar" if guitar_style != "none" else ", jangly guitar"
        prompt = (
            f"Instrumental post-punk by Joy Division{guitar}{bass}{drum}{synth} at {bpm} BPM."
        )
        logger.debug(f"Generated Post-Punk prompt: {prompt}")
        return prompt
    except Exception as e:
        logger.error(f"Failed to generate Post-Punk prompt: {e}")
        logger.error(traceback.format_exc())
        return ""

def set_indie_rock_prompt(bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style):
    try:
        drum = f", {drum_beat} drums" if drum_beat != "none" else ""
        synth = f", {synthesizer}" if synthesizer != "none" else ""
        bass = f", {bass_style} bass" if bass_style == "none" else ", groovy bass"
        guitar = f", {guitar_style} guitar" if guitar_style == "none" else ", jangly guitar"
        prompt = (
            f"Instrumental indie rock by Arctic Monkeys{guitar}{bass}{drum}{synth} at {bpm} BPM."
        )
        logger.debug(f"Generated Indie Rock prompt: {prompt}")
        return prompt
    except Exception as e:
        logger.error(f"Failed to generate Indie Rock prompt: {e}")
        logger.error(traceback.format_exc())
        return ""

def set_funk_rock_prompt(bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style):
    try:
        drum = f", {drum_beat} drums" if drum_beat != "none" else ", heavy drums"
        synth = f", {synthesizer}" if synthesizer != "none" else ""
        bass = f", {bass_style} bass" if bass_style == "none" else ", slap bass"
        guitar = f", {guitar_style} guitar" if guitar_style == "none" else ", funky guitar"
        prompt = (
            f"Instrumental funk rock by Rage Against the Machine{guitar}{bass}{drum}{synth} at {bpm} BPM."
        )
        logger.debug(f"Generated Funk Rock prompt: {prompt}")
        return prompt
    except Exception as e:
        logger.error(f"Failed to generate Funk Rock prompt: {e}")
        logger.error(traceback.format_exc())
        return ""

def set_detroit_techno_prompt(bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style):
    try:
        drum = f", {drum_beat} drums" if drum_beat != "none" else ", four-on-the-floor drums"
        synth = f", {synthesizer}" if synthesizer != "none" else ", pulsing synths"
        bass = f", {bass_style} bass" if bass_style == "none" else ", driving bass"
        guitar = f", {guitar_style} guitar" if guitar_style == "none" else ""
        prompt = (
            f"Instrumental Detroit techno by Juan Atkins{synth}{bass}{drum}{guitar} at {bpm} BPM."
        )
        logger.debug(f"Generated Detroit Techno prompt: {prompt}")
        return prompt
    except Exception as e:
        logger.error(f"Failed to generate Detroit Techno prompt: {e}")
        logger.error(traceback.format_exc())
        return ""

def set_deep_house_prompt(bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style):
    try:
        drum = f", {drum_beat} drums" if drum_beat == "none" else ", steady kick drums"
        synth = f", {synthesizer}" if synthesizer != "none" else ", warm synths"
        bass = f", {bass_style} bass" if bass_style == "none" else ", deep bass"
        guitar = f", {guitar_style} guitar" if guitar_style == "none" else ""
        prompt = (
            f"Instrumental deep house by Larry Heard{synth}{bass}{drum}{guitar} at {bpm} BPM."
        )
        logger.debug(f"Generated Deep House prompt: {prompt}")
        return prompt
    except Exception as e:
        logger.error(f"Failed to generate Deep House prompt: {e}")
        logger.error(traceback.format_exc())
        return ""

# Preset configurations with user-recommended settings
PRESETS = {
    "default": {"cfg_scale": 5.8, "top_k": 18, "top_p": 0.88, "temperature": 0.15},
    "rock": {"cfg_scale": 5.8, "top_k": 18, "top_p": 0.88, "temperature": 0.15},
    "techno": {"cfg_scale": 5.8, "top_k": 18, "top_p": 0.88, "temperature": 0.15},
    "grunge": {"cfg_scale": 5.8, "top_k": 18, "top_p": 0.88, "temperature": 0.15},
    "indie": {"cfg_scale": 5.8, "top_k": 18, "top_p": 0.88, "temperature": 0.15},
    "funk_rock": {"cfg_scale": 5.8, "top_k": 18, "top_p": 0.88, "temperature": 0.15}
}

# Function to get the latest log file
def get_latest_log():
    try:
        log_files = sorted(Path(log_dir).glob("musicgen_log_*.log"), key=os.path.getmtime, reverse=True)
        if not log_files:
            logger.warning("No log files found")
            return "No log files found."
        with open(log_files[0], "r") as f:
            content = f.read()
        logger.info(f"Retrieved latest log file: {log_files[0]}")
        return content
    except Exception as e:
        logger.error(f"Failed to read log file: {e}")
        logger.error(traceback.format_exc())
        return f"Error reading log file: {e}"

# Bitrate selection functions with visual feedback
def set_bitrate_128():
    logger.info("Bitrate set to 128 kbps")
    return "128k"

def set_bitrate_192():
    logger.info("Bitrate set to 192 kbps")
    return "192k"

def set_bitrate_320():
    logger.info("Bitrate set to 320 kbps")
    return "320k"

# Sampling rate selection functions with visual feedback
def set_sample_rate_22050():
    logger.info("Output sampling rate set to 22.05 kHz")
    return "22050"

def set_sample_rate_44100():
    logger.info("Output sampling rate set to 44.1 kHz")
    return "44100"

def set_sample_rate_48000():
    logger.info("Output sampling rate set to 48 kHz")
    return "48000"

# Bit depth selection functions with visual feedback
def set_bit_depth_16():
    logger.info("Bit depth set to 16-bit")
    return "16"

def set_bit_depth_24():
    logger.info("Bit depth set to 24-bit")
    return "24"

# Wrapper for generate_music with post-generation cleanup
def generate_music_wrapper(*args):
    try:
        result = generate_music(*args)
        return result
    finally:
        clean_memory()

# Optimized generation function with chunk-based prompt variation
def generate_music(instrumental_prompt: str, cfg_scale: float, top_k: int, top_p: float, temperature: float, total_duration: int, bpm: int, drum_beat: str, synthesizer: str, rhythmic_steps: str, bass_style: str, guitar_style: str, target_volume: float, preset: str, max_steps: str, vram_status: str, bitrate: str, output_sample_rate: str, bit_depth: str):
    global musicgen_model
    if not instrumental_prompt.strip():
        logger.warning("Empty instrumental prompt provided")
        return None, "⚠️ Please enter a valid instrumental prompt!", vram_status
    try:
        logger.info("Starting music generation...")
        start_time = time.time()
        clean_memory()
        try:
            max_steps_int = int(max_steps)
        except ValueError:
            logger.error(f"Invalid max_steps value: {max_steps}")
            return None, "❌ Invalid max_steps value; must be a number (1000, 1200, 1300, or 1500)", vram_status
        try:
            output_sample_rate_int = int(output_sample_rate)
        except ValueError:
            logger.error(f"Invalid output_sample_rate value: {output_sample_rate}")
            return None, "❌ Invalid output sampling rate; must be a number (22050, 32000, 44100, or 48000)", vram_status
        try:
            bit_depth_int = int(bit_depth)
            sample_width = 3 if bit_depth_int == 24 else 2
        except ValueError:
            logger.error(f"Invalid bit_depth value: {bit_depth}")
            return None, "❌ Invalid bit depth; must be 16 or 24", vram_status
        max_duration = min(max_steps_int / 50, 30)
        total_duration = min(max(total_duration, 30), 120)
        processing_sample_rate = 48000  # Updated to user-recommended value
        channels = 2
        audio_segments = []
        overlap_duration = 0.2
        remaining_duration = total_duration

        if preset != "default":
            preset_params = PRESETS.get(preset, PRESETS["default"])
            cfg_scale = preset_params["cfg_scale"]
            top_k = preset_params["top_k"]
            top_p = preset_params["top_p"]
            temperature = preset_params["temperature"]
            logger.info(f"Applied preset {preset}: cfg_scale={cfg_scale}, top_k={top_k}, top_p={top_p}, temperature={temperature}")

        if not check_disk_space():
            logger.error("Insufficient disk space")
            return None, "⚠️ Insufficient disk space. Free up at least 1 GB.", vram_status

        seed = random.randint(0, 10000)
        logger.info(f"Generating audio for {total_duration}s with seed={seed}, max_steps={max_steps_int}, output_sample_rate={output_sample_rate_int} Hz, bit_depth={bit_depth_int}-bit")
        vram_status = f"Initial VRAM: {torch.cuda.memory_allocated() / 1024**2:.2f} MB"

        chunk_num = 0
        while remaining_duration > 0:
            current_duration = min(max_duration, remaining_duration)
            generation_duration = current_duration
            chunk_num += 1
            logger.info(f"Generating chunk {chunk_num} ({current_duration}s, VRAM: {torch.cuda.memory_allocated() / 1024**2:.2f} MB)")

            # Generate chunk-specific prompt for Red Hot Chili Peppers
            if "Red Hot Chili Peppers" in instrumental_prompt:
                chunk_prompt = set_red_hot_chili_peppers_prompt(bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style, chunk_num)
            else:
                # For other prompts, use the base prompt without variation (as a fallback)
                chunk_prompt = instrumental_prompt

            musicgen_model.set_generation_params(
                duration=generation_duration,
                use_sampling=True,
                top_k=top_k,
                top_p=top_p,
                temperature=temperature,
                cfg_coef=cfg_scale
            )

            try:
                with torch.no_grad():
                    with autocast(dtype=torch.float16):
                        torch.manual_seed(seed)
                        np.random.seed(seed)
                        torch.cuda.manual_seed_all(seed)
                        clean_memory()
                        if not audio_segments:
                            logger.debug("Generating first chunk")
                            audio_segment = musicgen_model.generate([chunk_prompt], progress=True)[0].cpu()
                        else:
                            logger.debug("Generating continuation chunk")
                            prev_segment = audio_segments[-1]
                            prev_segment = apply_noise_gate(prev_segment, threshold_db=-80, sample_rate=processing_sample_rate)
                            prev_segment = balance_stereo(prev_segment, noise_threshold=-40, sample_rate=processing_sample_rate)
                            temp_wav_path = f"temp_prev_{int(time.time()*1000)}.wav"
                            try:
                                logger.debug(f"Exporting previous segment to {temp_wav_path}")
                                prev_segment.export(temp_wav_path, format="wav")
                                with open(temp_wav_path, "rb") as f:
                                    mmapped_file = mmap.mmap(f.fileno(), 0, access=mmap.ACCESS_READ)
                                    prev_audio, prev_sr = torchaudio.load(temp_wav_path)
                                    mmapped_file.close()
                                if prev_sr != processing_sample_rate:
                                    logger.debug(f"Resampling from {prev_sr} to {processing_sample_rate}")
                                    prev_audio = torchaudio.functional.resample(prev_audio, prev_sr, processing_sample_rate, lowpass_filter_width=64)
                                if prev_audio.shape[0] != 2:
                                    logger.debug(f"Converting to stereo: {prev_audio.shape[0]} channels detected")
                                    prev_audio = prev_audio.repeat(2, 1)[:, :prev_audio.shape[1]]
                                prev_audio = prev_audio.to(device)
                                audio_segment = musicgen_model.generate_continuation(
                                    prompt=prev_audio[:, -int(processing_sample_rate * overlap_duration):],
                                    prompt_sample_rate=processing_sample_rate,
                                    descriptions=[chunk_prompt],
                                    progress=True
                                )[0].cpu()
                                del prev_audio
                            finally:
                                try:
                                    os.remove(temp_wav_path)
                                    logger.debug(f"Deleted temporary file {temp_wav_path}")
                                except OSError:
                                    logger.warning(f"Failed to delete temporary file {temp_wav_path}")
                            clean_memory()
            except Exception as e:
                logger.error(f"Error in chunk {chunk_num} generation: {e}")
                logger.error(traceback.format_exc())
                return None, f"❌ Failed to generate chunk {chunk_num}: {e}", vram_status

            logger.debug(f"Generated audio segment shape: {audio_segment.shape}, dtype: {audio_segment.dtype}")
            try:
                # Ensure the model's output is resampled to processing_sample_rate
                if audio_segment.shape[0] != 2:
                    logger.debug(f"Converting to stereo: {audio_segment.shape[0]} channels detected")
                    audio_segment = audio_segment.repeat(2, 1)[:, :audio_segment.shape[1]]
                # Convert to float32 before resampling to avoid "slow_conv2d_cpu" error
                audio_segment = audio_segment.to(dtype=torch.float32)
                audio_segment = torchaudio.functional.resample(audio_segment, 32000, processing_sample_rate, lowpass_filter_width=64)
                audio_np = audio_segment.numpy()
                if audio_np.ndim == 1:
                    logger.debug("Converting mono to stereo on CPU")
                    audio_np = np.stack([audio_np, audio_np], axis=0)
                if audio_np.shape[0] != 2:
                    logger.error(f"Expected stereo audio with shape (2, samples), got shape {audio_np.shape}")
                    return None, f"❌ Invalid audio shape for chunk {chunk_num}: {audio_np.shape}", vram_status
                audio_segment = torch.from_numpy(audio_np).to(dtype=torch.float16)
                logger.debug(f"Converted audio segment to float16, shape: {audio_segment.shape}")
            except Exception as e:
                logger.error(f"Failed to process audio segment for chunk {chunk_num}: {e}")
                logger.error(traceback.format_exc())
                return None, f"❌ Failed to process audio for chunk {chunk_num}: {e}", vram_status

            temp_wav_path = f"temp_audio_{int(time.time()*1000)}.wav"
            logger.debug(f"Saving audio segment to {temp_wav_path}, VRAM: {torch.cuda.memory_allocated() / 1024**2:.2f} MB")
            try:
                audio_segment_save = audio_segment.to(dtype=torch.float32)
                torchaudio.save(temp_wav_path, audio_segment_save, processing_sample_rate, bits_per_sample=bit_depth_int)
                del audio_segment_save
            except Exception as e:
                logger.error(f"Failed to save audio segment for chunk {chunk_num}: {e}")
                logger.error(traceback.format_exc())
                logger.warning(f"Skipping chunk {chunk_num} due to save error")
                del audio_segment
                clean_memory()
                continue

            clean_memory()
            try:
                with open(temp_wav_path, "rb") as f:
                    mmapped_file = mmap.mmap(f.fileno(), 0, access=mmap.ACCESS_READ)
                    segment = AudioSegment.from_wav(temp_wav_path)
                    mmapped_file.close()
            except Exception as e:
                logger.error(f"Failed to load WAV file for chunk {chunk_num}: {e}")
                logger.error(traceback.format_exc())
                logger.warning(f"Skipping chunk {chunk_num} due to WAV load error")
                del audio_segment
                clean_memory()
                continue
            finally:
                try:
                    os.remove(temp_wav_path)
                    logger.debug(f"Deleted temporary file {temp_wav_path}")
                except OSError:
                    logger.warning(f"Failed to delete temporary file {temp_wav_path}")

            try:
                segment = ensure_stereo(segment, processing_sample_rate, sample_width)
                segment = segment - 15
                if segment.frame_rate != processing_sample_rate:
                    logger.debug(f"Setting segment sample rate to {processing_sample_rate}")
                    segment = segment.set_frame_rate(processing_sample_rate)
                # Apply noise gate immediately after loading to catch high-pitched tones early
                segment = apply_noise_gate(segment, threshold_db=-80, sample_rate=processing_sample_rate)
                segment = balance_stereo(segment, noise_threshold=-40, sample_rate=processing_sample_rate)
                segment = rms_normalize(segment, target_rms_db=target_volume, peak_limit_db=-3.0, sample_rate=processing_sample_rate)
                segment = apply_eq(segment, sample_rate=processing_sample_rate)
                audio_segments.append(segment)
            except Exception as e:
                logger.error(f"Failed to process audio segment for chunk {chunk_num}: {e}")
                logger.error(traceback.format_exc())
                logger.warning(f"Skipping chunk {chunk_num} due to processing error")
                del audio_segment
                clean_memory()
                continue

            del audio_segment
            del audio_np
            clean_memory()
            vram_status = f"VRAM after chunk {chunk_num}: {torch.cuda.memory_allocated() / 1024**2:.2f} MB"
            time.sleep(0.1)
            remaining_duration -= current_duration

        if not audio_segments:
            logger.error("No audio segments generated")
            return None, "❌ No audio segments generated due to errors", vram_status

        logger.info("Combining audio chunks...")
        try:
            final_segment = audio_segments[0][:min(max_duration, total_duration) * 1000]
            final_segment = ensure_stereo(final_segment, processing_sample_rate, sample_width)
            overlap_ms = int(overlap_duration * 1000)

            for i in range(1, len(audio_segments)):
                current_segment = audio_segments[i]
                current_segment = current_segment[:min(max_duration, total_duration - (i * max_duration)) * 1000]
                current_segment = ensure_stereo(current_segment, processing_sample_rate, sample_width)

                if overlap_ms > 0 and len(current_segment) > overlap_ms:
                    logger.debug(f"Applying crossfade between chunks {i} and {i+1}")
                    prev_overlap = final_segment[-overlap_ms:]
                    curr_overlap = current_segment[:overlap_ms]
                    prev_wav_path = f"temp_prev_overlap_{int(time.time()*1000)}.wav"
                    curr_wav_path = f"temp_curr_overlap_{int(time.time()*1000)}.wav"
                    try:
                        prev_overlap.export(prev_wav_path, format="wav")
                        curr_overlap.export(curr_wav_path, format="wav")
                        clean_memory()
                        prev_audio, _ = torchaudio.load(prev_wav_path)
                        curr_audio, _ = torchaudio.load(curr_wav_path)
                        num_samples = min(prev_audio.shape[1], curr_audio.shape[1])
                        num_samples = num_samples - (num_samples % 2)
                        if num_samples <= 0:
                            logger.warning(f"Skipping crossfade for chunk {i+1} due to insufficient samples")
                            final_segment += current_segment
                            continue
                        blended_samples = torch.zeros(2, num_samples, dtype=torch.float32)
                        prev_samples = prev_audio[:, :num_samples]
                        curr_samples = curr_audio[:, :num_samples]
                        hann_window = torch.hann_window(num_samples, periodic=False)
                        fade_out = hann_window.flip(0)
                        fade_in = hann_window
                        blended_samples = (prev_samples * fade_out + curr_samples * fade_in)
                        blended_samples = (blended_samples * (2**23 if sample_width == 3 else 32767)).to(torch.int32 if sample_width == 3 else torch.int16)
                        temp_crossfade_path = f"temp_crossfade_{int(time.time()*1000)}.wav"
                        torchaudio.save(temp_crossfade_path, blended_samples, processing_sample_rate, bits_per_sample=bit_depth_int)
                        blended_segment = AudioSegment.from_wav(temp_crossfade_path)
                        blended_segment = ensure_stereo(blended_segment, processing_sample_rate, sample_width)
                        blended_segment = rms_normalize(blended_segment, target_rms_db=target_volume, peak_limit_db=-3.0, sample_rate=processing_sample_rate)
                        final_segment = final_segment[:-overlap_ms] + blended_segment + current_segment[overlap_ms:]
                    finally:
                        for temp_path in [prev_wav_path, curr_wav_path, temp_crossfade_path]:
                            try:
                                if os.path.exists(temp_path):
                                    os.remove(temp_path)
                                    logger.debug(f"Deleted temporary file {temp_path}")
                            except OSError:
                                logger.warning(f"Failed to delete temporary file {temp_path}")
                else:
                    logger.debug(f"Concatenating chunk {i+1} without crossfade")
                    final_segment += current_segment

            final_segment = final_segment[:total_duration * 1000]
            logger.info("Post-processing final track...")
            final_segment = apply_noise_gate(final_segment, threshold_db=-80, sample_rate=processing_sample_rate)
            final_segment = balance_stereo(final_segment, noise_threshold=-40, sample_rate=processing_sample_rate)
            final_segment = rms_normalize(final_segment, target_rms_db=target_volume, peak_limit_db=-3.0, sample_rate=processing_sample_rate)
            final_segment = apply_eq(final_segment, sample_rate=processing_sample_rate)
            final_segment = apply_fade(final_segment)
            final_segment = final_segment - 10
            final_segment = final_segment.set_frame_rate(output_sample_rate_int)

            mp3_path = f"output_adjusted_volume_{int(time.time())}.mp3"
            logger.info("⚠️ WARNING: Audio is set to safe levels (~ -23 dBFS RMS, -3 dBFS peak). Start playback at LOW volume (10-20%) and adjust gradually.")
            logger.info("VERIFY: Open the file in Audacity to check for high-pitched tones and quality. RMS should be ~ -23 dBFS, peaks ≀ -3 dBFS. Report any issues.")
            try:
                clean_memory()
                logger.debug(f"Exporting final audio to {mp3_path} with bitrate {bitrate}, sample rate {output_sample_rate_int} Hz, bit depth {bit_depth_int}-bit")
                final_segment.export(
                    mp3_path,
                    format="mp3",
                    bitrate=bitrate,
                    tags={"title": "GhostAI Instrumental", "artist": "GhostAI"}
                )
                logger.info(f"Final audio saved to {mp3_path}")
            except Exception as e:
                logger.error(f"Error exporting MP3 with bitrate {bitrate}: {e}")
                logger.error(traceback.format_exc())
                fallback_path = f"fallback_output_{int(time.time())}.mp3"
                try:
                    final_segment.export(fallback_path, format="mp3", bitrate="128k")
                    logger.info(f"Final audio saved to fallback: {fallback_path} with 128 kbps")
                    mp3_path = fallback_path
                except Exception as fallback_e:
                    logger.error(f"Failed to save fallback MP3: {fallback_e}")
                    return None, f"❌ Failed to export audio: {fallback_e}", vram_status

            vram_status = f"Final VRAM: {torch.cuda.memory_allocated() / 1024**2:.2f} MB"
            logger.info(f"Generation completed in {time.time() - start_time:.2f} seconds")
            return mp3_path, "βœ… Done! Generated track with adjusted volume levels. Check for quality in Audacity.", vram_status
        except Exception as e:
            logger.error(f"Failed to combine audio chunks: {e}")
            logger.error(traceback.format_exc())
            return None, f"❌ Failed to combine audio: {e}", vram_status
    except Exception as e:
        logger.error(f"Generation failed: {e}")
        logger.error(traceback.format_exc())
        return None, f"❌ Generation failed: {e}", vram_status
    finally:
        clean_memory()

# Clear inputs function
def clear_inputs():
    logger.info("Clearing input fields")
    return "", 5.8, 18, 0.88, 0.15, 30, 120, "none", "none", "none", "none", "none", -23.0, "default", 1300, "128k", "44100", "16"

# Custom CSS with high-contrast colors and green border on active selection
css = """
body { 
    background: #121212; 
    color: #E6E6E6; 
    font-family: 'Arial', sans-serif; 
}
.header-container { 
    text-align: center; 
    padding: 15px 20px; 
    background: #1E1E1E; 
    border-bottom: 2px solid #00C853; 
}
#ghost-logo { 
    font-size: 48px; 
    color: #00C853; 
}
h1 { 
    color: #FFD600; 
    font-size: 28px; 
    font-weight: bold; 
}
h3 { 
    color: #FFD600; 
    font-size: 20px; 
    font-weight: bold; 
}
p { 
    color: #B0BEC5; 
    font-size: 14px; 
}
.input-container, .settings-container, .output-container, .logs-container { 
    max-width: 1200px; 
    margin: 20px auto; 
    padding: 20px; 
    background: #212121; 
    border: 1px solid #424242; 
    border-radius: 8px; 
}
.textbox { 
    background: #2C2C2C; 
    border: 1px solid #B0BEC5; 
    color: #E6E6E6; 
    font-size: 16px; 
}
.genre-buttons, .bitrate-buttons, .sample-rate-buttons, .bit-depth-buttons { 
    display: flex; 
    justify-content: center; 
    flex-wrap: wrap; 
    gap: 10px; 
}
.genre-btn, .bitrate-btn, .sample-rate-btn, .bit-depth-btn, button { 
    background: #0288D1; 
    border: 2px solid transparent; 
    color: #FFFFFF; 
    padding: 10px 20px; 
    border-radius: 5px; 
    font-size: 16px; 
    transition: all 0.3s ease; 
}
button:hover { 
    background: #03A9F4; 
    cursor: pointer; 
}
button:active, .genre-btn.active, .bitrate-btn.active, .sample-rate-btn.active, .bit-depth-btn.active { 
    border: 2px solid #00C853 !important; 
    background: #01579B; 
    color: #FFFFFF; 
}
.gradio-container { 
    padding: 20px; 
}
.group-container { 
    margin-bottom: 20px; 
    padding: 15px; 
    border: 1px solid #424242; 
    border-radius: 8px; 
}
.slider-label, .dropdown-label { 
    color: #FFD600; 
    font-size: 16px; 
    font-weight: bold; 
}
.slider, .dropdown { 
    background: #2C2C2C; 
    color: #E6E6E6; 
}
.output-container label, .logs-container label { 
    color: #FFD600; 
    font-size: 16px; 
    font-weight: bold; 
}
"""

# Build Gradio interface with updated visuals and default preset
logger.info("Building Gradio interface...")
with gr.Blocks(css=css) as demo:
    gr.Markdown("""
        <div class="header-container">
            <div id="ghost-logo">πŸ‘»</div>
            <h1>GhostAI Music Generator 🎹</h1>
            <p>Create Instrumental Tracks with Ease</p>
        </div>
    """)
    
    with gr.Column(elem_classes="input-container"):
        gr.Markdown("### 🎸 Prompt Settings")
        instrumental_prompt = gr.Textbox(
            label="Instrumental Prompt ✍️",
            placeholder="Click a genre button or type your own instrumental prompt",
            lines=4,
            elem_classes="textbox"
        )
        with gr.Row(elem_classes="genre-buttons"):
            rhcp_btn = gr.Button("Red Hot Chili Peppers 🌢️", elem_classes="genre-btn")
            nirvana_btn = gr.Button("Nirvana Grunge 🎸", elem_classes="genre-btn")
            pearl_jam_btn = gr.Button("Pearl Jam Grunge πŸ¦ͺ", elem_classes="genre-btn")
            soundgarden_btn = gr.Button("Soundgarden Grunge πŸŒ‘", elem_classes="genre-btn")
            foo_fighters_btn = gr.Button("Foo Fighters 🀘", elem_classes="genre-btn")
            smashing_pumpkins_btn = gr.Button("Smashing Pumpkins πŸŽƒ", elem_classes="genre-btn")
            radiohead_btn = gr.Button("Radiohead 🧠", elem_classes="genre-btn")
            classic_rock_btn = gr.Button("Metallica Heavy Metal 🎸", elem_classes="genre-btn")
            alternative_rock_btn = gr.Button("Alternative Rock 🎡", elem_classes="genre-btn")
            post_punk_btn = gr.Button("Post-Punk πŸ–€", elem_classes="genre-btn")
            indie_rock_btn = gr.Button("Indie Rock 🎀", elem_classes="genre-btn")
            funk_rock_btn = gr.Button("Funk Rock πŸ•Ί", elem_classes="genre-btn")
            detroit_techno_btn = gr.Button("Detroit Techno πŸŽ›οΈ", elem_classes="genre-btn")
            deep_house_btn = gr.Button("Deep House 🏠", elem_classes="genre-btn")
    
    with gr.Column(elem_classes="settings-container"):
        gr.Markdown("### βš™οΈ API Settings")
        with gr.Group(elem_classes="group-container"):
            cfg_scale = gr.Slider(
                label="CFG Scale 🎯",
                minimum=1.0,
                maximum=10.0,
                value=5.8,
                step=0.1,
                info="Controls how closely the music follows the prompt."
            )
            top_k = gr.Slider(
                label="Top-K Sampling πŸ”’",
                minimum=10,
                maximum=500,
                value=18,
                step=10,
                info="Limits sampling to the top k most likely tokens."
            )
            top_p = gr.Slider(
                label="Top-P Sampling 🎰",
                minimum=0.0,
                maximum=1.0,
                value=0.88,
                step=0.05,
                info="Keeps tokens with cumulative probability above p."
            )
            temperature = gr.Slider(
                label="Temperature πŸ”₯",
                minimum=0.1,
                maximum=2.0,
                value=0.15,
                step=0.1,
                info="Controls randomness; lower values reduce noise."
            )
            total_duration = gr.Dropdown(
                label="Song Length ⏳ (seconds)",
                choices=[30, 60, 90, 120],
                value=30,
                info="Select the total duration of the track."
            )
            bpm = gr.Slider(
                label="Tempo 🎡 (BPM)",
                minimum=60,
                maximum=180,
                value=120,
                step=1,
                info="Beats per minute to set the track's tempo."
            )
            drum_beat = gr.Dropdown(
                label="Drum Beat πŸ₯",
                choices=["none", "standard rock", "funk groove", "techno kick", "jazz swing"],
                value="none",
                info="Select a drum beat style to influence the rhythm."
            )
            synthesizer = gr.Dropdown(
                label="Synthesizer 🎹",
                choices=["none", "analog synth", "digital pad", "arpeggiated synth"],
                value="none",
                info="Select a synthesizer style for electronic accents."
            )
            rhythmic_steps = gr.Dropdown(
                label="Rhythmic Steps πŸ‘£",
                choices=["none", "syncopated steps", "steady steps", "complex steps"],
                value="none",
                info="Select a rhythmic step style to enhance the beat."
            )
            bass_style = gr.Dropdown(
                label="Bass Style 🎸",
                choices=["none", "slap bass", "deep bass", "melodic bass"],
                value="none",
                info="Select a bass style to shape the low end."
            )
            guitar_style = gr.Dropdown(
                label="Guitar Style 🎸",
                choices=["none", "distorted", "clean", "jangle"],
                value="none",
                info="Select a guitar style to define the riffs."
            )
            target_volume = gr.Slider(
                label="Target Volume 🎚️ (dBFS RMS)",
                minimum=-30.0,
                maximum=-20.0,
                value=-23.0,
                step=1.0,
                info="Adjust output loudness (-23 dBFS is standard, -20 dBFS is louder, -30 dBFS is quieter)."
            )
            preset = gr.Dropdown(
                label="Preset Configuration πŸŽ›οΈ",
                choices=["default", "rock", "techno", "grunge", "indie", "funk_rock"],
                value="default",
                info="Select a preset optimized for specific genres."
            )
            max_steps = gr.Dropdown(
                label="Max Steps per Chunk πŸ“",
                choices=[1000, 1200, 1300, 1500],
                value=1300,
                info="Number of generation steps per chunk (1300=~26s, extended to 30s)."
            )
            bitrate_state = gr.State(value="128k")
            sample_rate_state = gr.State(value="44100")
            bit_depth_state = gr.State(value="16")
            with gr.Row(elem_classes="bitrate-buttons"):
                bitrate_128_btn = gr.Button("Set Bitrate to 128 kbps", elem_classes="bitrate-btn")
                bitrate_192_btn = gr.Button("Set Bitrate to 192 kbps", elem_classes="bitrate-btn")
                bitrate_320_btn = gr.Button("Set Bitrate to 320 kbps", elem_classes="bitrate-btn")
            with gr.Row(elem_classes="sample-rate-buttons"):
                sample_rate_22050_btn = gr.Button("Set Sampling Rate to 22.05 kHz", elem_classes="sample-rate-btn")
                sample_rate_44100_btn = gr.Button("Set Sampling Rate to 44.1 kHz", elem_classes="sample-rate-btn")
                sample_rate_48000_btn = gr.Button("Set Sampling Rate to 48 kHz", elem_classes="sample-rate-btn")
            with gr.Row(elem_classes="bit-depth-buttons"):
                bit_depth_16_btn = gr.Button("Set Bit Depth to 16-bit", elem_classes="bit-depth-btn")
                bit_depth_24_btn = gr.Button("Set Bit Depth to 24-bit", elem_classes="bit-depth-btn")

        with gr.Row(elem_classes="action-buttons"):
            gen_btn = gr.Button("Generate Music πŸš€")
            clr_btn = gr.Button("Clear Inputs 🧹")
    
    with gr.Column(elem_classes="output-container"):
        gr.Markdown("### 🎧 Output")
        out_audio = gr.Audio(label="Generated Instrumental Track 🎡", type="filepath")
        status = gr.Textbox(label="Status πŸ“’", interactive=False)
        vram_status = gr.Textbox(label="VRAM Usage πŸ“Š", interactive=False, value="")

    with gr.Column(elem_classes="logs-container"):
        gr.Markdown("### πŸ“œ Logs")
        log_output = gr.Textbox(label="Last Log File Contents", lines=20, interactive=False)
        log_btn = gr.Button("View Last Log πŸ“‹")

    # Add JavaScript to handle button selection visuals
    def update_button_styles(selected_button):
        buttons = [
            "rhcp_btn", "nirvana_btn", "pearl_jam_btn", "soundgarden_btn", "foo_fighters_btn",
            "smashing_pumpkins_btn", "radiohead_btn", "classic_rock_btn", "alternative_rock_btn",
            "post_punk_btn", "indie_rock_btn", "funk_rock_btn", "detroit_techno_btn", "deep_house_btn",
            "bitrate_128_btn", "bitrate_192_btn", "bitrate_320_btn",
            "sample_rate_22050_btn", "sample_rate_44100_btn", "sample_rate_48000_btn",
            "bit_depth_16_btn", "bit_depth_24_btn"
        ]
        script = """
        <script>
            document.querySelectorAll('.genre-btn, .bitrate-btn, .sample-rate-btn, .bit-depth-btn').forEach(btn => {
                btn.classList.remove('active');
            });
            document.querySelector('#""" + selected_button + """').classList.add('active');
        </script>
        """
        return script

    rhcp_btn.click(set_red_hot_chili_peppers_prompt, inputs=[bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style, gr.State(value=1)], outputs=instrumental_prompt, _js=update_button_styles("rhcp_btn"))
    nirvana_btn.click(set_nirvana_grunge_prompt, inputs=[bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style], outputs=instrumental_prompt, _js=update_button_styles("nirvana_btn"))
    pearl_jam_btn.click(set_pearl_jam_grunge_prompt, inputs=[bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style], outputs=instrumental_prompt, _js=update_button_styles("pearl_jam_btn"))
    soundgarden_btn.click(set_soundgarden_grunge_prompt, inputs=[bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style], outputs=instrumental_prompt, _js=update_button_styles("soundgarden_btn"))
    foo_fighters_btn.click(set_foo_fighters_prompt, inputs=[bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style], outputs=instrumental_prompt, _js=update_button_styles("foo_fighters_btn"))
    smashing_pumpkins_btn.click(set_smashing_pumpkins_prompt, inputs=[bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style], outputs=instrumental_prompt, _js=update_button_styles("smashing_pumpkins_btn"))
    radiohead_btn.click(set_radiohead_prompt, inputs=[bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style], outputs=instrumental_prompt, _js=update_button_styles("radiohead_btn"))
    classic_rock_btn.click(set_classic_rock_prompt, inputs=[bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style], outputs=instrumental_prompt, _js=update_button_styles("classic_rock_btn"))
    alternative_rock_btn.click(set_alternative_rock_prompt, inputs=[bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style], outputs=instrumental_prompt, _js=update_button_styles("alternative_rock_btn"))
    post_punk_btn.click(set_post_punk_prompt, inputs=[bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style], outputs=instrumental_prompt, _js=update_button_styles("post_punk_btn"))
    indie_rock_btn.click(set_indie_rock_prompt, inputs=[bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style], outputs=instrumental_prompt, _js=update_button_styles("indie_rock_btn"))
    funk_rock_btn.click(set_funk_rock_prompt, inputs=[bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style], outputs=instrumental_prompt, _js=update_button_styles("funk_rock_btn"))
    detroit_techno_btn.click(set_detroit_techno_prompt, inputs=[bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style], outputs=instrumental_prompt, _js=update_button_styles("detroit_techno_btn"))
    deep_house_btn.click(set_deep_house_prompt, inputs=[bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style], outputs=instrumental_prompt, _js=update_button_styles("deep_house_btn"))
    bitrate_128_btn.click(set_bitrate_128, inputs=None, outputs=bitrate_state, _js=update_button_styles("bitrate_128_btn"))
    bitrate_192_btn.click(set_bitrate_192, inputs=None, outputs=bitrate_state, _js=update_button_styles("bitrate_192_btn"))
    bitrate_320_btn.click(set_bitrate_320, inputs=None, outputs=bitrate_state, _js=update_button_styles("bitrate_320_btn"))
    sample_rate_22050_btn.click(set_sample_rate_22050, inputs=None, outputs=sample_rate_state, _js=update_button_styles("sample_rate_22050_btn"))
    sample_rate_44100_btn.click(set_sample_rate_44100, inputs=None, outputs=sample_rate_state, _js=update_button_styles("sample_rate_44100_btn"))
    sample_rate_48000_btn.click(set_sample_rate_48000, inputs=None, outputs=sample_rate_state, _js=update_button_styles("sample_rate_48000_btn"))
    bit_depth_16_btn.click(set_bit_depth_16, inputs=None, outputs=bit_depth_state, _js=update_button_styles("bit_depth_16_btn"))
    bit_depth_24_btn.click(set_bit_depth_24, inputs=None, outputs=bit_depth_state, _js=update_button_styles("bit_depth_24_btn"))
    gen_btn.click(
        generate_music_wrapper,
        inputs=[instrumental_prompt, cfg_scale, top_k, top_p, temperature, total_duration, bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style, target_volume, preset, max_steps, vram_status, bitrate_state, sample_rate_state, bit_depth_state],
        outputs=[out_audio, status, vram_status]
    )
    clr_btn.click(
        clear_inputs,
        inputs=None,
        outputs=[instrumental_prompt, cfg_scale, top_k, top_p, temperature, total_duration, bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style, target_volume, preset, max_steps, bitrate_state, sample_rate_state, bit_depth_state]
    )
    log_btn.click(
        get_latest_log,
        inputs=None,
        outputs=log_output
    )

# Launch locally without OpenAPI/docs
logger.info("Launching Gradio UI at http://localhost:9999...")
try:
    app = demo.launch(
        server_name="0.0.0.0",
        server_port=9999,
        share=False,
        inbrowser=False,
        show_error=True
    )
except Exception as e:
    logger.error(f"Failed to launch Gradio UI: {e}")
    logger.error(traceback.format_exc())
    sys.exit(1)