Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- README.md +90 -3
- coco-labels-2014_2017.txt +80 -0
- evaluate.py +97 -0
- example.py +216 -0
- example_input.jpg +0 -0
- example_output.jpg +3 -0
- export_model.py +451 -0
- recipe.sh +35 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
example_output.jpg filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -1,3 +1,90 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv4-tiny
|
2 |
+
|
3 |
+
## Introduction
|
4 |
+
|
5 |
+
YOLO (You Only Look Once) is a series of object detection models designed for fast inference, which makes them well suited for edge devices.
|
6 |
+
|
7 |
+
YOLOv4 [2] was released in 2020 and provides many small improvements over YOLOv3 [3]. These improvements add up to create a more precise network at the same speed.
|
8 |
+
|
9 |
+
The model regresses bounding boxes (4 coordinates) and a confidence score for each box. The bounding box decoding and non-maximum suppression (NMS) steps are NOT included in the model.
|
10 |
+
Please look at `example.py` for an example of implementation of box decoding and NMS.
|
11 |
+
|
12 |
+
## Model Information
|
13 |
+
|
14 |
+
Information | Value
|
15 |
+
--- | ---
|
16 |
+
Input shape | RGB image (416, 416, 3)
|
17 |
+
Input example | <img src="example_input.jpg" width=320px> ([Image source](https://commons.wikimedia.org/wiki/File:Moscow_bus_151872_2022-05.jpg), Public domain)
|
18 |
+
Output shape | Tensors of size (26, 26, 255) and (13, 13, 255) containing bounding box coordinates (not decoded) and class scores for two resolution levels and 3 anchor boxes per cell. More information in `example.py`.
|
19 |
+
Output example | <img src="example_output.jpg" width=320px>
|
20 |
+
FLOPS | 6.9G
|
21 |
+
Number of parameters | 6.05M
|
22 |
+
File size (int8) | 5.9M
|
23 |
+
Source framework | DarkNet
|
24 |
+
Target platform | MPUs
|
25 |
+
|
26 |
+
## Version and changelog
|
27 |
+
|
28 |
+
Initial release of quantized int8 and float32 models.
|
29 |
+
|
30 |
+
## Tested configurations
|
31 |
+
|
32 |
+
The int8 model has been tested on i.MX 8MP and i.MX 93 (BSP LF6.1.22_2.0.0) using benchmark-model.
|
33 |
+
|
34 |
+
## Training and evaluation
|
35 |
+
|
36 |
+
The model has been trained and evaluated on the [COCO dataset](https://cocodataset.org/) [1], which features 80 classes.
|
37 |
+
The floating point model achieved a score of 40mAP@0.5IoU on the test set, according to [the source of the model](https://github.com/AlexeyAB/darknet/).
|
38 |
+
Using the `evaluate.py` script, we evaluate the int8 quantized model on the validation set and obtain 33mAP@0.5IoU.
|
39 |
+
|
40 |
+
Instructions to re-train the network can be found [in the original repository](https://github.com/AlexeyAB/darknet/)
|
41 |
+
|
42 |
+
## Conversion/Quantization
|
43 |
+
|
44 |
+
The original model is converted from the DarkNet framework to TensorFlow Lite.
|
45 |
+
|
46 |
+
The `export_model.py` conversion script performs this conversion and outputs the int8 quantized model and float32 model.
|
47 |
+
100 random images from the COCO 2017 validation dataset are used as calibration for the quantization.
|
48 |
+
|
49 |
+
## Use case and limitations
|
50 |
+
|
51 |
+
This model can be used for fast object detection on 416x416 pixel images.
|
52 |
+
It is not the most accurate model, but it is enough for many applications.
|
53 |
+
We noticed that the model performs well for large objects but has issues will small objects.
|
54 |
+
This is probably due to the fact that it only features two output levels instead of three for larger models.
|
55 |
+
|
56 |
+
|
57 |
+
## Performance
|
58 |
+
|
59 |
+
Here are performance figures evaluated on i.MX 8M Plus and i.MX 93 (BSP LF6.1.22_2.0.0):
|
60 |
+
|
61 |
+
Model | Average latency | Platform | Accelerator | Command
|
62 |
+
--- | --- | --- | --- | ---
|
63 |
+
Int8 | 908ms | i.MX 8M Plus | CPU (1 thread) | /usr/bin/tensorflow-lite-2.10.0/examples/benchmark_model --graph=yolov4-tiny_416_quant.tflite
|
64 |
+
Int8 | 363ms | i.MX 8M Plus | CPU (4 threads) | /usr/bin/tensorflow-lite-2.10.0/examples/benchmark_model --graph=yolov4-tiny_416_quant.tflite --num_threads=4
|
65 |
+
Int8 | 18.0ms | i.MX 8M Plus | NPU | /usr/bin/tensorflow-lite-2.10.0/examples/benchmark_model --graph=yolov4-tiny_416_quant.tflite --external_delegate_path=/usr/lib/libvx_delegate.so
|
66 |
+
Int8 | 404ms | i.MX 93 | CPU (1 thread) | /usr/bin/tensorflow-lite-2.10.0/examples/benchmark_model --graph=yolov4-tiny_416_quant.tflite
|
67 |
+
Int8 | 299ms | i.MX 93 | CPU (2 threads) | /usr/bin/tensorflow-lite-2.10.0/examples/benchmark_model --graph=yolov4-tiny_416_quant.tflite --num_threads=2
|
68 |
+
Int8 | 21.1ms | i.MX 93 | NPU | /usr/bin/tensorflow-lite-2.10.0/examples/benchmark_model --graph=yolov4-tiny_416_quant_vela.tflite --external_delegate_path=/usr/lib/libethosu_delegate.so
|
69 |
+
|
70 |
+
## Download and run
|
71 |
+
|
72 |
+
To create the TensorFlow Lite model fully quantized in int8 with int8 input and float32 output and the float32 model, run:
|
73 |
+
|
74 |
+
bash recipe.sh
|
75 |
+
|
76 |
+
The TensorFlow Lite model file for i.MX 8M Plus and i.MX 93 CPU is `yolov4-tiny_416_quant.tflite`. The model for i.MX 93 NPU will be in `model_imx93`.
|
77 |
+
|
78 |
+
The 32-bit floating point model is `yolov4-tiny_416_float32.tflite`.
|
79 |
+
|
80 |
+
An example of how to use the model is in `example.py`.
|
81 |
+
|
82 |
+
## Origin
|
83 |
+
|
84 |
+
Model implementation: https://github.com/AlexeyAB/darknet/
|
85 |
+
|
86 |
+
[1] Lin, Tsung-Yi, et al. "Microsoft coco: Common objects in context." European conference on computer vision. Springer, Cham, 2014.
|
87 |
+
|
88 |
+
[2] Bochkovskiy, Alexey, Chien-Yao Wang, and Hong-Yuan Mark Liao. "Yolov4: Optimal speed and accuracy of object detection." arXiv preprint arXiv:2004.10934 (2020).
|
89 |
+
|
90 |
+
[3] Redmon, Joseph, and Ali Farhadi. "Yolov3: An incremental improvement." arXiv preprint arXiv:1804.02767 (2018).
|
coco-labels-2014_2017.txt
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
person
|
2 |
+
bicycle
|
3 |
+
car
|
4 |
+
motorcycle
|
5 |
+
airplane
|
6 |
+
bus
|
7 |
+
train
|
8 |
+
truck
|
9 |
+
boat
|
10 |
+
traffic light
|
11 |
+
fire hydrant
|
12 |
+
stop sign
|
13 |
+
parking meter
|
14 |
+
bench
|
15 |
+
bird
|
16 |
+
cat
|
17 |
+
dog
|
18 |
+
horse
|
19 |
+
sheep
|
20 |
+
cow
|
21 |
+
elephant
|
22 |
+
bear
|
23 |
+
zebra
|
24 |
+
giraffe
|
25 |
+
backpack
|
26 |
+
umbrella
|
27 |
+
handbag
|
28 |
+
tie
|
29 |
+
suitcase
|
30 |
+
frisbee
|
31 |
+
skis
|
32 |
+
snowboard
|
33 |
+
sports ball
|
34 |
+
kite
|
35 |
+
baseball bat
|
36 |
+
baseball glove
|
37 |
+
skateboard
|
38 |
+
surfboard
|
39 |
+
tennis racket
|
40 |
+
bottle
|
41 |
+
wine glass
|
42 |
+
cup
|
43 |
+
fork
|
44 |
+
knife
|
45 |
+
spoon
|
46 |
+
bowl
|
47 |
+
banana
|
48 |
+
apple
|
49 |
+
sandwich
|
50 |
+
orange
|
51 |
+
broccoli
|
52 |
+
carrot
|
53 |
+
hot dog
|
54 |
+
pizza
|
55 |
+
donut
|
56 |
+
cake
|
57 |
+
chair
|
58 |
+
couch
|
59 |
+
potted plant
|
60 |
+
bed
|
61 |
+
dining table
|
62 |
+
toilet
|
63 |
+
tv
|
64 |
+
laptop
|
65 |
+
mouse
|
66 |
+
remote
|
67 |
+
keyboard
|
68 |
+
cell phone
|
69 |
+
microwave
|
70 |
+
oven
|
71 |
+
toaster
|
72 |
+
sink
|
73 |
+
refrigerator
|
74 |
+
book
|
75 |
+
clock
|
76 |
+
vase
|
77 |
+
scissors
|
78 |
+
teddy bear
|
79 |
+
hair drier
|
80 |
+
toothbrush
|
evaluate.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
# Copyright 2023-2024 NXP
|
3 |
+
# SPDX-License-Identifier: MIT
|
4 |
+
|
5 |
+
import wget
|
6 |
+
import zipfile
|
7 |
+
import json
|
8 |
+
import glob
|
9 |
+
import os
|
10 |
+
import tensorflow as tf
|
11 |
+
import numpy as np
|
12 |
+
from tqdm import tqdm
|
13 |
+
from pycocotools.cocoeval import COCOeval
|
14 |
+
from pycocotools.coco import COCO
|
15 |
+
from example import load_image
|
16 |
+
from example import decode_output, run_inference, gen_box_colors
|
17 |
+
|
18 |
+
OBJECT_DETECTOR_TFLITE = "yolov4-tiny_416_quant.tflite"
|
19 |
+
SCORE_THRESHOLD = 0.0
|
20 |
+
NMS_IOU_THRESHOLD = 0.5
|
21 |
+
INFERENCE_IMG_SIZE = 416
|
22 |
+
|
23 |
+
LABEL_MAP = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20,
|
24 |
+
21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34, 35, 36, 37, 38, 39,
|
25 |
+
40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56,
|
26 |
+
57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 70, 72, 73, 74, 75, 76,
|
27 |
+
77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90]
|
28 |
+
|
29 |
+
COCO_WEBSITE = "http://images.cocodataset.org"
|
30 |
+
VAL_IMG_URL = COCO_WEBSITE + "/zips/val2017.zip"
|
31 |
+
VAL_ANNO_URL = COCO_WEBSITE + "/annotations/annotations_trainval2017.zip"
|
32 |
+
|
33 |
+
BOX_COLORS = gen_box_colors()
|
34 |
+
|
35 |
+
print("Downloading COCO validation dataset...")
|
36 |
+
response = wget.download(VAL_IMG_URL, "val2017.zip")
|
37 |
+
response = wget.download(VAL_ANNO_URL, "annotations_trainval2017.zip")
|
38 |
+
|
39 |
+
with zipfile.ZipFile("val2017.zip", 'r') as zip_ref:
|
40 |
+
zip_ref.extractall("coco")
|
41 |
+
|
42 |
+
with zipfile.ZipFile("annotations_trainval2017.zip", 'r') as zip_ref:
|
43 |
+
zip_ref.extractall("coco")
|
44 |
+
|
45 |
+
|
46 |
+
interpreter = tf.lite.Interpreter(OBJECT_DETECTOR_TFLITE)
|
47 |
+
interpreter.allocate_tensors()
|
48 |
+
|
49 |
+
annotations = COCO(annotation_file="coco/annotations/instances_val2017.json")
|
50 |
+
|
51 |
+
|
52 |
+
def evaluate(interpreter):
|
53 |
+
image_filenames = glob.glob("coco/val2017/*")
|
54 |
+
|
55 |
+
results = []
|
56 |
+
|
57 |
+
for image_fn in tqdm(image_filenames, desc="Evaluating"):
|
58 |
+
|
59 |
+
image_id = int(os.path.splitext(os.path.basename(image_fn))[0])
|
60 |
+
|
61 |
+
orig_image, img = load_image(image_fn)
|
62 |
+
yolo_output = run_inference(interpreter, img)
|
63 |
+
scores, boxes, classes = decode_output(yolo_output,
|
64 |
+
SCORE_THRESHOLD,
|
65 |
+
NMS_IOU_THRESHOLD)
|
66 |
+
|
67 |
+
shp = orig_image.shape
|
68 |
+
boxes = boxes.numpy()
|
69 |
+
boxes /= INFERENCE_IMG_SIZE
|
70 |
+
boxes *= np.array([shp[1], shp[0], shp[1], shp[0]])
|
71 |
+
|
72 |
+
boxes = boxes.astype(np.int32)
|
73 |
+
|
74 |
+
boxes[..., 2] = boxes[..., 2] - boxes[..., 0]
|
75 |
+
boxes[..., 3] = boxes[..., 3] - boxes[..., 1]
|
76 |
+
|
77 |
+
for score, box, clas in zip(scores.numpy(), boxes, classes.numpy()):
|
78 |
+
results.append({"image_id": image_id,
|
79 |
+
"category_id": int(LABEL_MAP[clas]),
|
80 |
+
"bbox": [float(x) for x in list(box)],
|
81 |
+
"score": float(score)})
|
82 |
+
|
83 |
+
return results
|
84 |
+
|
85 |
+
|
86 |
+
predictions = evaluate(interpreter)
|
87 |
+
|
88 |
+
with open("predictions.json", "w") as f:
|
89 |
+
json.dump(predictions, f, indent=4)
|
90 |
+
|
91 |
+
predictions = annotations.loadRes("predictions.json")
|
92 |
+
|
93 |
+
cocoeval = COCOeval(annotations, predictions, "bbox")
|
94 |
+
|
95 |
+
cocoeval.evaluate()
|
96 |
+
cocoeval.accumulate()
|
97 |
+
cocoeval.summarize()
|
example.py
ADDED
@@ -0,0 +1,216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
# Copyright 2023-2024 NXP
|
3 |
+
# SPDX-License-Identifier: MIT
|
4 |
+
|
5 |
+
import cv2
|
6 |
+
import tensorflow as tf
|
7 |
+
import numpy as np
|
8 |
+
import time
|
9 |
+
import random
|
10 |
+
|
11 |
+
random.seed(42)
|
12 |
+
|
13 |
+
OBJECT_DETECTOR_TFLITE = 'yolov4-tiny_416_quant.tflite'
|
14 |
+
LABELS_FILE = 'coco-labels-2014_2017.txt'
|
15 |
+
IMAGE_FILENAME = 'example_input.jpg'
|
16 |
+
|
17 |
+
SCORE_THRESHOLD = 0.20
|
18 |
+
NMS_IOU_THRESHOLD = 0.5
|
19 |
+
INFERENCE_IMG_SIZE = 416
|
20 |
+
MAX_DETS = 100
|
21 |
+
|
22 |
+
ANCHORS = [[[81, 82], [135, 169], [344, 319]], [[23, 27], [37, 58], [81, 82]]]
|
23 |
+
SIGMOID_FACTOR = [1.05, 1.05]
|
24 |
+
NUM_ANCHORS = 3
|
25 |
+
STRIDES = [32, 16]
|
26 |
+
GRID_SIZES = [int(INFERENCE_IMG_SIZE / s) for s in STRIDES]
|
27 |
+
|
28 |
+
with open(LABELS_FILE, 'r') as f:
|
29 |
+
COCO_CLASSES = [line.strip() for line in f.readlines()]
|
30 |
+
|
31 |
+
interpreter = tf.lite.Interpreter(OBJECT_DETECTOR_TFLITE)
|
32 |
+
interpreter.allocate_tensors()
|
33 |
+
|
34 |
+
|
35 |
+
def gen_box_colors():
|
36 |
+
colors = []
|
37 |
+
for _ in range(len(COCO_CLASSES)):
|
38 |
+
r = random.randint(100, 255)
|
39 |
+
g = random.randint(100, 255)
|
40 |
+
b = random.randint(100, 255)
|
41 |
+
colors.append((r, g, b))
|
42 |
+
|
43 |
+
return colors
|
44 |
+
|
45 |
+
|
46 |
+
BOX_COLORS = gen_box_colors()
|
47 |
+
|
48 |
+
|
49 |
+
def load_image(filename):
|
50 |
+
orig_image = cv2.imread(filename, 1)
|
51 |
+
image = cv2.cvtColor(orig_image, cv2.COLOR_BGR2RGB)
|
52 |
+
image = cv2.resize(image, (INFERENCE_IMG_SIZE, INFERENCE_IMG_SIZE))
|
53 |
+
image = np.expand_dims(image, axis=0)
|
54 |
+
image = image / 255.0
|
55 |
+
return orig_image, image
|
56 |
+
|
57 |
+
|
58 |
+
def np_sigmoid(x):
|
59 |
+
return 1 / (1 + np.exp(-x))
|
60 |
+
|
61 |
+
|
62 |
+
def reciprocal_sigmoid(x):
|
63 |
+
return -np.log(1 / x - 1)
|
64 |
+
|
65 |
+
|
66 |
+
def decode_boxes_prediction(yolo_output):
|
67 |
+
# Each output level represents a grid of predictions.
|
68 |
+
# The first output level is a 26x26 grid and the second 13x13.
|
69 |
+
# Each cell of each grid is assigned to 3 anchor bounding boxes.
|
70 |
+
# The bounding box predictions are regressed
|
71 |
+
# relatively to these anchor boxes.
|
72 |
+
# Thus, the model predicts 3 bounding boxes per cell per output level.
|
73 |
+
# The output is structured as follows:
|
74 |
+
# For each cell [[x, y, w, h, conf, cl_0, cl_1, ..., cl_79], # anchor 1
|
75 |
+
# [x, y, w, h, conf, cl_0, cl_1, ..., cl_79], # anchor 2
|
76 |
+
# [x, y, w, h, conf, cl_0, cl_1, ..., cl_79]] # anchor 3
|
77 |
+
# Hence, we have 85 values per anchor box, and thus 255 values per cell.
|
78 |
+
# The decoding of the output bounding boxes is described in Figure 2 of
|
79 |
+
# the YOLOv3 paper https://arxiv.org/pdf/1804.02767.pdf;
|
80 |
+
|
81 |
+
boxes_list = []
|
82 |
+
scores_list = []
|
83 |
+
classes_list = []
|
84 |
+
|
85 |
+
for idx, feats in enumerate(yolo_output):
|
86 |
+
|
87 |
+
features = np.reshape(feats, (NUM_ANCHORS * GRID_SIZES[idx] ** 2, 85))
|
88 |
+
|
89 |
+
anchor = np.array(ANCHORS[idx])
|
90 |
+
factor = SIGMOID_FACTOR[idx]
|
91 |
+
grid_size = GRID_SIZES[idx]
|
92 |
+
stride = STRIDES[idx]
|
93 |
+
|
94 |
+
cell_confidence = features[..., 4]
|
95 |
+
logit_threshold = reciprocal_sigmoid(SCORE_THRESHOLD)
|
96 |
+
over_threshold_list = np.where(cell_confidence > logit_threshold)
|
97 |
+
|
98 |
+
if over_threshold_list[0].size > 0:
|
99 |
+
indices = np.array(over_threshold_list[0])
|
100 |
+
|
101 |
+
box_positions = np.floor_divide(indices, 3)
|
102 |
+
|
103 |
+
list_xy = np.array(np.divmod(box_positions, grid_size)).T
|
104 |
+
list_xy = list_xy[..., ::-1]
|
105 |
+
boxes_xy = np.reshape(list_xy, (int(list_xy.size / 2), 2))
|
106 |
+
|
107 |
+
outxy = features[indices, :2]
|
108 |
+
|
109 |
+
# boxes center coordinates
|
110 |
+
centers = np_sigmoid(outxy * factor) - 0.5 * (factor - 1)
|
111 |
+
centers += boxes_xy
|
112 |
+
centers *= stride
|
113 |
+
|
114 |
+
# boxes width and height
|
115 |
+
width_height = np.exp(features[indices, 2:4])
|
116 |
+
width_height *= anchor[np.divmod(indices, NUM_ANCHORS)[1]]
|
117 |
+
|
118 |
+
boxes_list.append(np.stack([centers[:, 0] - width_height[:, 0]/2,
|
119 |
+
centers[:, 1] - width_height[:, 1]/2,
|
120 |
+
centers[:, 0] + width_height[:, 0]/2,
|
121 |
+
centers[:, 1] + width_height[:, 1]/2],
|
122 |
+
axis=1))
|
123 |
+
|
124 |
+
# confidence that cell contains an object
|
125 |
+
scores_list.append(np_sigmoid(features[indices, 4:5]))
|
126 |
+
|
127 |
+
# class with the highest probability in this cell
|
128 |
+
classes_list.append(np.argmax(features[indices, 5:], axis=1))
|
129 |
+
|
130 |
+
if len(boxes_list) > 0:
|
131 |
+
boxes = np.concatenate(boxes_list, axis=0)
|
132 |
+
scores = np.concatenate(scores_list, axis=0)[:, 0]
|
133 |
+
classes = np.concatenate(classes_list, axis=0)
|
134 |
+
|
135 |
+
return boxes, scores, classes
|
136 |
+
else:
|
137 |
+
return np.zeros((0, 4)), np.zeros((0)), np.zeros((0))
|
138 |
+
|
139 |
+
|
140 |
+
def decode_output(yolo_outputs,
|
141 |
+
score_threshold=SCORE_THRESHOLD,
|
142 |
+
iou_threshold=NMS_IOU_THRESHOLD):
|
143 |
+
'''
|
144 |
+
Decode output from YOLOv4 tiny in inference size referential (416x416)
|
145 |
+
'''
|
146 |
+
boxes, scores, classes = decode_boxes_prediction(yolo_outputs)
|
147 |
+
|
148 |
+
# apply NMS from tensorflow
|
149 |
+
inds = tf.image.non_max_suppression(boxes, scores, MAX_DETS,
|
150 |
+
score_threshold=score_threshold,
|
151 |
+
iou_threshold=iou_threshold)
|
152 |
+
|
153 |
+
# keep only selected boxes
|
154 |
+
boxes = tf.gather(boxes, inds)
|
155 |
+
scores = tf.gather(scores, inds)
|
156 |
+
classes = tf.gather(classes, inds)
|
157 |
+
|
158 |
+
return scores, boxes, classes
|
159 |
+
|
160 |
+
|
161 |
+
def run_inference(interpreter, image, threshold=SCORE_THRESHOLD):
|
162 |
+
|
163 |
+
input_details = interpreter.get_input_details()
|
164 |
+
output_details = interpreter.get_output_details()
|
165 |
+
input_scale, input_zero_point = input_details[0]["quantization"]
|
166 |
+
image = image / input_scale + input_zero_point
|
167 |
+
image = image.astype(np.int8)
|
168 |
+
|
169 |
+
interpreter.set_tensor(input_details[0]['index'], image)
|
170 |
+
interpreter.invoke()
|
171 |
+
|
172 |
+
boxes = interpreter.get_tensor(output_details[0]['index'])
|
173 |
+
boxes2 = interpreter.get_tensor(output_details[1]['index'])
|
174 |
+
|
175 |
+
return [boxes, boxes2]
|
176 |
+
|
177 |
+
|
178 |
+
if __name__ == "__main__":
|
179 |
+
|
180 |
+
orig_image, processed_image = load_image(IMAGE_FILENAME)
|
181 |
+
|
182 |
+
start = time.time()
|
183 |
+
yolo_output = run_inference(interpreter, processed_image)
|
184 |
+
end = time.time()
|
185 |
+
|
186 |
+
scores, boxes, classes = decode_output(yolo_output)
|
187 |
+
|
188 |
+
# rescale boxes for display
|
189 |
+
shp = orig_image.shape
|
190 |
+
boxes = boxes.numpy()
|
191 |
+
boxes /= INFERENCE_IMG_SIZE
|
192 |
+
boxes *= np.array([shp[1], shp[0], shp[1], shp[0]])
|
193 |
+
|
194 |
+
boxes = boxes.astype(np.int32)
|
195 |
+
|
196 |
+
print("Inference time", end - start, "ms")
|
197 |
+
print("Detected", boxes.shape[0], "object(s)")
|
198 |
+
print("Box coordinates:")
|
199 |
+
|
200 |
+
for i in range(boxes.shape[0]):
|
201 |
+
box = boxes[i, :]
|
202 |
+
print(box, end=" ")
|
203 |
+
class_name = COCO_CLASSES[classes[i].numpy()]
|
204 |
+
score = scores[i].numpy()
|
205 |
+
color = BOX_COLORS[classes[i]]
|
206 |
+
print("class", class_name, end=" ")
|
207 |
+
print("score", score)
|
208 |
+
cv2.rectangle(orig_image, (box[0], box[1]), (box[2], box[3]),
|
209 |
+
color, 3)
|
210 |
+
cv2.putText(orig_image, f"{class_name} {score:.2f}",
|
211 |
+
(box[0], box[1] - 10),
|
212 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.6, color, 2)
|
213 |
+
|
214 |
+
cv2.imwrite('example_output.jpg', orig_image)
|
215 |
+
cv2.imshow('', orig_image)
|
216 |
+
cv2.waitKey()
|
example_input.jpg
ADDED
![]() |
example_output.jpg
ADDED
![]() |
Git LFS Details
|
export_model.py
ADDED
@@ -0,0 +1,451 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023-2024 NXP
|
2 |
+
# SPDX-License-Identifier: BSD-3-Clause
|
3 |
+
|
4 |
+
import os
|
5 |
+
import numpy as np
|
6 |
+
import struct
|
7 |
+
import tensorflow as tf
|
8 |
+
from tensorflow.keras.layers import Conv2D, Input, LeakyReLU
|
9 |
+
from tensorflow.keras.layers import ZeroPadding2D, UpSampling2D
|
10 |
+
from tensorflow.keras.layers import MaxPool2D, add, concatenate
|
11 |
+
from tensorflow.keras.models import Model
|
12 |
+
import argparse
|
13 |
+
import PIL.Image as im
|
14 |
+
import random
|
15 |
+
|
16 |
+
random.seed(42)
|
17 |
+
|
18 |
+
N_CALIBRATION_IMAGES = 100
|
19 |
+
|
20 |
+
parser = argparse.ArgumentParser()
|
21 |
+
parser.add_argument('--weights_path', help='path to darknet weights')
|
22 |
+
parser.add_argument('--output_path', help='path to save tflite model')
|
23 |
+
parser.add_argument('--images_path',
|
24 |
+
help='path to representative images for quantization',
|
25 |
+
default=None)
|
26 |
+
args = parser.parse_args()
|
27 |
+
|
28 |
+
|
29 |
+
def _conv_block(inp, convs, skip=False):
|
30 |
+
x = inp
|
31 |
+
count = 0
|
32 |
+
|
33 |
+
for conv in convs:
|
34 |
+
if count == (len(convs) - 2) and skip:
|
35 |
+
skip_connection = x
|
36 |
+
count += 1
|
37 |
+
|
38 |
+
if conv['stride'] > 1:
|
39 |
+
x = ZeroPadding2D(((1, 0), (1, 0)),
|
40 |
+
name='zerop_' + str(conv['layer_idx']))(
|
41 |
+
x) # peculiar padding as darknet prefer left and top
|
42 |
+
|
43 |
+
x = Conv2D(conv['filter'],
|
44 |
+
conv['kernel'],
|
45 |
+
strides=conv['stride'],
|
46 |
+
# peculiar padding as darknet prefer left and top
|
47 |
+
padding='valid' if conv['stride'] > 1 else 'same',
|
48 |
+
name='convn_' + str(conv['layer_idx']) \
|
49 |
+
if conv['bnorm'] else 'conv_' + str(conv['layer_idx']),
|
50 |
+
activation=None,
|
51 |
+
use_bias=True)(x)
|
52 |
+
|
53 |
+
if conv['activ'] == 1:
|
54 |
+
x = LeakyReLU(alpha=0.1, name='leaky_' + str(conv['layer_idx']))(x)
|
55 |
+
|
56 |
+
return add([skip_connection, x],
|
57 |
+
name='add_' + str(conv['layer_idx'] + 1)) if skip else x
|
58 |
+
|
59 |
+
|
60 |
+
def _split_block(input_layer, layer_idx):
|
61 |
+
s = tf.split(input_layer,
|
62 |
+
num_or_size_splits=2,
|
63 |
+
axis=-1,
|
64 |
+
name=f"split_{layer_idx}")
|
65 |
+
return s[1]
|
66 |
+
|
67 |
+
|
68 |
+
def make_yolov4_tiny_model():
|
69 |
+
input_image = Input(shape=(416, 416, 3),
|
70 |
+
batch_size=1,
|
71 |
+
name='input_0')
|
72 |
+
# Layer 0
|
73 |
+
x = _conv_block(input_image, [{'filter': 32,
|
74 |
+
'kernel': 3,
|
75 |
+
'stride': 2,
|
76 |
+
'bnorm': True,
|
77 |
+
'activ': 1,
|
78 |
+
'layer_idx': 0}])
|
79 |
+
layer_0 = x
|
80 |
+
# Layer 1
|
81 |
+
x = _conv_block(x, [{'filter': 64,
|
82 |
+
'kernel': 3,
|
83 |
+
'stride': 2,
|
84 |
+
'bnorm': True,
|
85 |
+
'activ': 1,
|
86 |
+
'layer_idx': 1}])
|
87 |
+
layer_1 = x
|
88 |
+
# Layer 2, concat1
|
89 |
+
x = _conv_block(x, [{'filter': 64,
|
90 |
+
'kernel': 3,
|
91 |
+
'stride': 1,
|
92 |
+
'bnorm': True,
|
93 |
+
'activ': 1,
|
94 |
+
'layer_idx': 2}])
|
95 |
+
layer_2 = x
|
96 |
+
# Layer 3, route group
|
97 |
+
x = _split_block(x, layer_idx=3)
|
98 |
+
# Layer 4, concat_route_1
|
99 |
+
x = _conv_block(x, [{'filter': 32,
|
100 |
+
'kernel': 3,
|
101 |
+
'stride': 1,
|
102 |
+
'bnorm': True,
|
103 |
+
'activ': 1,
|
104 |
+
'layer_idx': 4}])
|
105 |
+
layer_4 = x
|
106 |
+
# Layer 5, concat_route_2
|
107 |
+
x = _conv_block(x, [{'filter': 32,
|
108 |
+
'kernel': 3,
|
109 |
+
'stride': 1,
|
110 |
+
'bnorm': True,
|
111 |
+
'activ': 1,
|
112 |
+
'layer_idx': 5}])
|
113 |
+
layer_5 = x
|
114 |
+
# Layer 6, concat route
|
115 |
+
x = concatenate([layer_5, layer_4], axis=-1, name='concat_6')
|
116 |
+
# Layer 7, concat2
|
117 |
+
x = _conv_block(x, [{'filter': 64,
|
118 |
+
'kernel': 1,
|
119 |
+
'stride': 1,
|
120 |
+
'bnorm': True,
|
121 |
+
'activ': 1,
|
122 |
+
'layer_idx': 7}])
|
123 |
+
layer_7 = x
|
124 |
+
# Layer 8, concat
|
125 |
+
x = concatenate([layer_2, layer_7], axis=-1, name='concat_8')
|
126 |
+
# Layer 9
|
127 |
+
x = MaxPool2D(pool_size=(2, 2), padding='same', name='layer_9')(x)
|
128 |
+
|
129 |
+
# Layer 10, concat 1
|
130 |
+
x = _conv_block(x, [{'filter': 128,
|
131 |
+
'kernel': 3,
|
132 |
+
'stride': 1,
|
133 |
+
'bnorm': True,
|
134 |
+
'activ': 1,
|
135 |
+
'layer_idx': 10}])
|
136 |
+
layer_10 = x
|
137 |
+
# Layer 11
|
138 |
+
x = _split_block(x, layer_idx=11)
|
139 |
+
# Layer 12, concat route 1
|
140 |
+
x = _conv_block(x, [{'filter': 64,
|
141 |
+
'kernel': 3,
|
142 |
+
'stride': 1,
|
143 |
+
'bnorm': True,
|
144 |
+
'activ': 1,
|
145 |
+
'layer_idx': 12}])
|
146 |
+
layer_12 = x
|
147 |
+
# Layer 13, concat route 2
|
148 |
+
x = _conv_block(x, [{'filter': 64,
|
149 |
+
'kernel': 3,
|
150 |
+
'stride': 1,
|
151 |
+
'bnorm': True,
|
152 |
+
'activ': 1,
|
153 |
+
'layer_idx': 13}])
|
154 |
+
layer_13 = x
|
155 |
+
# Layer 14
|
156 |
+
x = concatenate([layer_13, layer_12], axis=-1, name='concat_14')
|
157 |
+
# Layer 15, concat 2
|
158 |
+
x = _conv_block(x, [{'filter': 128,
|
159 |
+
'kernel': 1,
|
160 |
+
'stride': 1,
|
161 |
+
'bnorm': True,
|
162 |
+
'activ': 1,
|
163 |
+
'layer_idx': 15}])
|
164 |
+
layer_15 = x
|
165 |
+
# Layer 16
|
166 |
+
x = concatenate([layer_10, layer_15], axis=-1, name='concat_16')
|
167 |
+
# Layer 17
|
168 |
+
x = MaxPool2D(pool_size=(2, 2), padding='same', name='layer_17')(x)
|
169 |
+
|
170 |
+
# Layer 18, concat 1
|
171 |
+
x = _conv_block(x, [{'filter': 256,
|
172 |
+
'kernel': 3,
|
173 |
+
'stride': 1,
|
174 |
+
'bnorm': True,
|
175 |
+
'activ': 1,
|
176 |
+
'layer_idx': 18}])
|
177 |
+
layer_18 = x
|
178 |
+
# Layer 19
|
179 |
+
x = _split_block(x, layer_idx=19)
|
180 |
+
# Layer 20, concat route 1
|
181 |
+
x = _conv_block(x, [{'filter': 128,
|
182 |
+
'kernel': 3,
|
183 |
+
'stride': 1,
|
184 |
+
'bnorm': True,
|
185 |
+
'activ': 1,
|
186 |
+
'layer_idx': 20}])
|
187 |
+
layer_20 = x
|
188 |
+
# Layer 21, concat route 2
|
189 |
+
x = _conv_block(x, [{'filter': 128,
|
190 |
+
'kernel': 3,
|
191 |
+
'stride': 1,
|
192 |
+
'bnorm': True,
|
193 |
+
'activ': 1,
|
194 |
+
'layer_idx': 21}])
|
195 |
+
layer_21 = x
|
196 |
+
# Layer 22
|
197 |
+
x = concatenate([layer_21, layer_20], axis=-1, name='concat_22')
|
198 |
+
# Layer 23, concat 2, output 1 of cspdarknet
|
199 |
+
x = _conv_block(x, [{'filter': 256,
|
200 |
+
'kernel': 1,
|
201 |
+
'stride': 1,
|
202 |
+
'bnorm': True,
|
203 |
+
'activ': 1,
|
204 |
+
'layer_idx': 23}])
|
205 |
+
layer_23 = x
|
206 |
+
# Layer 24
|
207 |
+
x = concatenate([layer_18, layer_23], axis=-1, name='concat_24')
|
208 |
+
# Layer 25
|
209 |
+
x = MaxPool2D(pool_size=(2, 2), padding='same', name='layer_25')(x)
|
210 |
+
|
211 |
+
# Layer 26, output 2 of cspdarknet
|
212 |
+
x = _conv_block(x, [{'filter': 512,
|
213 |
+
'kernel': 3,
|
214 |
+
'stride': 1,
|
215 |
+
'bnorm': True,
|
216 |
+
'activ': 1,
|
217 |
+
'layer_idx': 26}])
|
218 |
+
layer_26 = x
|
219 |
+
|
220 |
+
# After backbone
|
221 |
+
# Layer 27, concat 1, branch 1
|
222 |
+
x = _conv_block(layer_26, [{'filter': 256,
|
223 |
+
'kernel': 1,
|
224 |
+
'stride': 1,
|
225 |
+
'bnorm': True,
|
226 |
+
'activ': 1,
|
227 |
+
'layer_idx': 27}])
|
228 |
+
layer_27 = x
|
229 |
+
|
230 |
+
# Layer 28
|
231 |
+
x = _conv_block(x, [{'filter': 512,
|
232 |
+
'kernel': 3,
|
233 |
+
'stride': 1,
|
234 |
+
'bnorm': True,
|
235 |
+
'activ': 1,
|
236 |
+
'layer_idx': 28}])
|
237 |
+
layer_28 = x
|
238 |
+
# Layer 29, output of large grid
|
239 |
+
x = _conv_block(x, [{'filter': 255,
|
240 |
+
'kernel': 1,
|
241 |
+
'stride': 1,
|
242 |
+
'bnorm': True,
|
243 |
+
'activ': 0,
|
244 |
+
'layer_idx': 29}])
|
245 |
+
layer_29 = x
|
246 |
+
|
247 |
+
# Layer 30, continue from layer_27
|
248 |
+
x = _conv_block(layer_27, [{'filter': 128,
|
249 |
+
'kernel': 1,
|
250 |
+
'stride': 1,
|
251 |
+
'bnorm': True,
|
252 |
+
'activ': 1,
|
253 |
+
'layer_idx': 30}])
|
254 |
+
layer_30 = x
|
255 |
+
# Layer 31
|
256 |
+
x = UpSampling2D(size=(2, 2),
|
257 |
+
name='upsamp_31',
|
258 |
+
interpolation='bilinear')(x)
|
259 |
+
layer_31 = x
|
260 |
+
# Layer 32
|
261 |
+
x = concatenate([layer_31, layer_23], axis=-1, name='concat_32')
|
262 |
+
# Layer 33
|
263 |
+
x = _conv_block(x, [{'filter': 256,
|
264 |
+
'kernel': 3,
|
265 |
+
'stride': 1,
|
266 |
+
'bnorm': True,
|
267 |
+
'activ': 1,
|
268 |
+
'layer_idx': 33}])
|
269 |
+
# Layer 34, output of medium grid
|
270 |
+
x = _conv_block(x, [{'filter': 255,
|
271 |
+
'kernel': 1,
|
272 |
+
'stride': 1,
|
273 |
+
'bnorm': True,
|
274 |
+
'activ': 0,
|
275 |
+
'layer_idx': 34}])
|
276 |
+
layer_34 = x
|
277 |
+
|
278 |
+
# End
|
279 |
+
model = Model(input_image, [layer_34, layer_29], name='Yolov4-tiny')
|
280 |
+
model.summary()
|
281 |
+
return model
|
282 |
+
|
283 |
+
|
284 |
+
# Define the model
|
285 |
+
model = make_yolov4_tiny_model()
|
286 |
+
|
287 |
+
model.summary()
|
288 |
+
|
289 |
+
|
290 |
+
# load weights in keras
|
291 |
+
|
292 |
+
class WeightReader:
|
293 |
+
def __init__(self, weight_file):
|
294 |
+
with open(weight_file, 'rb') as w_f:
|
295 |
+
major, = struct.unpack('i', w_f.read(4))
|
296 |
+
minor, = struct.unpack('i', w_f.read(4))
|
297 |
+
revision, = struct.unpack('i', w_f.read(4))
|
298 |
+
|
299 |
+
if (major * 10 + minor) >= 2 and major < 1000 and minor < 1000:
|
300 |
+
print("reading 64 bytes")
|
301 |
+
w_f.read(8)
|
302 |
+
else:
|
303 |
+
print("reading 32 bytes")
|
304 |
+
w_f.read(4)
|
305 |
+
|
306 |
+
transpose = (major > 1000) or (minor > 1000)
|
307 |
+
|
308 |
+
binary = w_f.read()
|
309 |
+
|
310 |
+
self.offset = 0
|
311 |
+
self.all_weights = np.frombuffer(binary, dtype='float32')
|
312 |
+
print(f"weight total length {len(self.all_weights)}")
|
313 |
+
|
314 |
+
def read_bytes(self, size):
|
315 |
+
self.offset = self.offset + size
|
316 |
+
return self.all_weights[self.offset - size:self.offset]
|
317 |
+
|
318 |
+
def load_weights(self, model):
|
319 |
+
count = 0
|
320 |
+
ncount = 0
|
321 |
+
for i in range(35):
|
322 |
+
try:
|
323 |
+
|
324 |
+
conv_layer = model.get_layer('convn_' + str(i))
|
325 |
+
|
326 |
+
filter = conv_layer.kernel.shape[-1]
|
327 |
+
# kernel*kernel*c*filter
|
328 |
+
nweights = np.prod(conv_layer.kernel.shape)
|
329 |
+
|
330 |
+
print(f"loading weights of convolution #" +
|
331 |
+
str(i) + "- nb parameters: " +
|
332 |
+
str(nweights + filter))
|
333 |
+
|
334 |
+
if i in [29, 34]:
|
335 |
+
bias = self.read_bytes(filter) # bias
|
336 |
+
weights = self.read_bytes(nweights) # weights
|
337 |
+
|
338 |
+
else:
|
339 |
+
bias = self.read_bytes(filter) # bias
|
340 |
+
scale = self.read_bytes(filter) # scale
|
341 |
+
mean = self.read_bytes(filter) # mean
|
342 |
+
var = self.read_bytes(filter) # variance
|
343 |
+
weights = self.read_bytes(nweights) # weights
|
344 |
+
|
345 |
+
# normalize bias
|
346 |
+
bias = bias - scale * mean / (np.sqrt(var + 0.00001))
|
347 |
+
|
348 |
+
# normalize weights
|
349 |
+
weights = np.reshape(weights,
|
350 |
+
(filter, int(nweights / filter)))
|
351 |
+
A = scale / (np.sqrt(var + 0.00001))
|
352 |
+
A = np.expand_dims(A, axis=0)
|
353 |
+
weights = weights * A.T
|
354 |
+
weights = np.reshape(weights, (nweights))
|
355 |
+
|
356 |
+
shp = list(reversed(conv_layer.get_weights()[0].shape))
|
357 |
+
weights = weights.reshape(shp)
|
358 |
+
weights = weights.transpose([2, 3, 1, 0])
|
359 |
+
|
360 |
+
if len(conv_layer.get_weights()) > 1:
|
361 |
+
a = conv_layer.set_weights([weights, bias])
|
362 |
+
else:
|
363 |
+
a = conv_layer.set_weights([weights])
|
364 |
+
|
365 |
+
count = count + 1
|
366 |
+
ncount = ncount + nweights + filter
|
367 |
+
|
368 |
+
except ValueError:
|
369 |
+
print("no convolution #" + str(i))
|
370 |
+
|
371 |
+
print(count,
|
372 |
+
"Convolution Normalized Layers are loaded with ",
|
373 |
+
ncount,
|
374 |
+
" parameters")
|
375 |
+
|
376 |
+
def reset(self):
|
377 |
+
self.offset = 0
|
378 |
+
|
379 |
+
|
380 |
+
darknet_model = args.weights_path + '/yolov4-tiny.weights'
|
381 |
+
weight_reader = WeightReader(darknet_model)
|
382 |
+
weight_reader.load_weights(model)
|
383 |
+
|
384 |
+
|
385 |
+
def image_resize(image, resize_shape):
|
386 |
+
image_copy = np.copy(image)
|
387 |
+
resize_h, resize_w = resize_shape
|
388 |
+
orig_h, orig_w, _ = image_copy.shape
|
389 |
+
|
390 |
+
scale = min(resize_h / orig_h, resize_w / orig_w)
|
391 |
+
temp_w, temp_h = int(scale * orig_w), int(scale * orig_h)
|
392 |
+
image_resized = image.resize((temp_w, temp_h), im.BILINEAR)
|
393 |
+
image_paded = np.full(shape=[resize_h, resize_w, 3], fill_value=128.0)
|
394 |
+
r_w = (resize_w - temp_w) // 2 # real_w
|
395 |
+
r_h = (resize_h - temp_h) // 2 # real_h
|
396 |
+
image_paded[r_h:temp_h + r_h, r_w:temp_w + r_w, :] = image_resized
|
397 |
+
image_paded = image_paded / 255.
|
398 |
+
return image_paded
|
399 |
+
|
400 |
+
|
401 |
+
def representative_dataset():
|
402 |
+
_, h, w, _ = model.input_shape
|
403 |
+
image_folder = args.images_path
|
404 |
+
image_files = os.listdir(image_folder)
|
405 |
+
random.shuffle(image_files)
|
406 |
+
image_files = image_files[:N_CALIBRATION_IMAGES]
|
407 |
+
for image_file in image_files:
|
408 |
+
image_path = os.path.join(image_folder, image_file)
|
409 |
+
original_image = im.open(image_path)
|
410 |
+
if original_image.mode != "RGB":
|
411 |
+
continue
|
412 |
+
image_data = image_resize(original_image, [h, w])
|
413 |
+
img_in = image_data[np.newaxis, ...].astype(np.float32)
|
414 |
+
yield [img_in]
|
415 |
+
|
416 |
+
|
417 |
+
def dummy_dataset():
|
418 |
+
_, h, w, _ = model.input_shape
|
419 |
+
for i in range(N_CALIBRATION_IMAGES):
|
420 |
+
# Tensorflow basic format : NHWC
|
421 |
+
img_in = np.random.randn(1, h, w, 3).astype('float32')
|
422 |
+
yield [img_in]
|
423 |
+
|
424 |
+
|
425 |
+
converter = tf.lite.TFLiteConverter.from_keras_model(model)
|
426 |
+
|
427 |
+
# quantized model
|
428 |
+
tflite_quant = args.output_path + '/yolov4-tiny_416_quant.tflite'
|
429 |
+
|
430 |
+
converter.optimizations = [tf.lite.Optimize.DEFAULT]
|
431 |
+
if args.images_path is not None:
|
432 |
+
converter.representative_dataset = representative_dataset
|
433 |
+
else: # Dummy dataset if no representative dataset is given
|
434 |
+
converter.representative_dataset = dummy_dataset
|
435 |
+
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
|
436 |
+
converter.inference_input_type = tf.int8
|
437 |
+
converter.inference_output_type = tf.float32
|
438 |
+
|
439 |
+
tflite_model = converter.convert()
|
440 |
+
with open(tflite_quant, 'wb') as f:
|
441 |
+
f.write(tflite_model)
|
442 |
+
|
443 |
+
|
444 |
+
# float32 model
|
445 |
+
converter = tf.lite.TFLiteConverter.from_keras_model(model)
|
446 |
+
|
447 |
+
tflite_float = args.output_path + '/yolov4-tiny_416_float32.tflite'
|
448 |
+
|
449 |
+
tflite_model = converter.convert()
|
450 |
+
with open(tflite_float, 'wb') as f:
|
451 |
+
f.write(tflite_model)
|
recipe.sh
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env bash
|
2 |
+
# Copyright 2023-2024 NXP
|
3 |
+
# SPDX-License-Identifier: MIT
|
4 |
+
|
5 |
+
set -e
|
6 |
+
|
7 |
+
wget https://github.com/AlexeyAB/darknet/releases/download/darknet_yolo_v4_pre/yolov4-tiny.weights
|
8 |
+
wget https://raw.githubusercontent.com/amikelive/coco-labels/master/coco-labels-2014_2017.txt
|
9 |
+
|
10 |
+
|
11 |
+
# tensorflow -> tflite
|
12 |
+
python3.8 -m venv env
|
13 |
+
source ./env/bin/activate
|
14 |
+
|
15 |
+
pip install --upgrade pip
|
16 |
+
pip install tensorflow==2.10.0
|
17 |
+
pip install Pillow
|
18 |
+
|
19 |
+
wget --no-check-certificate https://images.cocodataset.org/zips/val2017.zip
|
20 |
+
unzip val2017.zip
|
21 |
+
|
22 |
+
# convert model from darknet to tensorflow lite
|
23 |
+
python3.8 export_model.py --weights_path=./ --output_path=./ --images_path=val2017
|
24 |
+
|
25 |
+
# install vela
|
26 |
+
pip install numpy==1.20
|
27 |
+
pip install git+https://github.com/nxp-imx/ethos-u-vela.git@lf-6.1.22-2.0.0
|
28 |
+
|
29 |
+
vela --output-dir model_imx93 yolov4-tiny_416_quant.tflite
|
30 |
+
|
31 |
+
# cleanup
|
32 |
+
deactivate
|
33 |
+
rm -rf val2017 env
|
34 |
+
rm val2017.zip
|
35 |
+
rm yolov4-tiny.weights
|