gaunernst commited on
Commit
ad6960f
·
verified ·
1 Parent(s): 7a4b611

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,548 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: gemma
3
+ library_name: transformers
4
+ pipeline_tag: image-text-to-text
5
+ extra_gated_heading: Access Gemma on Hugging Face
6
+ extra_gated_prompt: To access Gemma on Hugging Face, you’re required to review and
7
+ agree to Google’s usage license. To do this, please ensure you’re logged in to Hugging
8
+ Face and click below. Requests are processed immediately.
9
+ extra_gated_button_content: Acknowledge license
10
+ base_model: google/gemma-3-4b-it
11
+ ---
12
+
13
+ # Gemma 3 4B Instruction-tuned QAT compressed-tensors
14
+
15
+ This checkpoint was converted from https://huggingface.co/google/gemma-3-4b-it-qat-q4_0-gguf to [compressed-tensors](https://github.com/neuralmagic/compressed-tensors) format and BF16 dtype (hence, not lossess).
16
+
17
+ You can run this with vLLM
18
+
19
+ ```bash
20
+ vllm serve gaunernst/gemma-3-4b-it-qat-compressed-tensors
21
+ ```
22
+
23
+ Below is the original model card.
24
+
25
+ # Gemma 3 model card
26
+
27
+ **Model Page**: [Gemma](https://ai.google.dev/gemma/docs/core)
28
+
29
+ **Resources and Technical Documentation**:
30
+
31
+ * [Gemma 3 Technical Report][g3-tech-report]
32
+ * [Responsible Generative AI Toolkit][rai-toolkit]
33
+ * [Gemma on Kaggle][kaggle-gemma]
34
+ * [Gemma on Vertex Model Garden][vertex-mg-gemma3]
35
+
36
+ **Terms of Use**: [Terms][terms]
37
+
38
+ **Authors**: Google DeepMind
39
+
40
+ ## Model Information
41
+
42
+ Summary description and brief definition of inputs and outputs.
43
+
44
+ ### Description
45
+
46
+ Gemma is a family of lightweight, state-of-the-art open models from Google,
47
+ built from the same research and technology used to create the Gemini models.
48
+ Gemma 3 models are multimodal, handling text and image input and generating text
49
+ output, with open weights for both pre-trained variants and instruction-tuned
50
+ variants. Gemma 3 has a large, 128K context window, multilingual support in over
51
+ 140 languages, and is available in more sizes than previous versions. Gemma 3
52
+ models are well-suited for a variety of text generation and image understanding
53
+ tasks, including question answering, summarization, and reasoning. Their
54
+ relatively small size makes it possible to deploy them in environments with
55
+ limited resources such as laptops, desktops or your own cloud infrastructure,
56
+ democratizing access to state of the art AI models and helping foster innovation
57
+ for everyone.
58
+
59
+ ### Inputs and outputs
60
+
61
+ - **Input:**
62
+ - Text string, such as a question, a prompt, or a document to be summarized
63
+ - Images, normalized to 896 x 896 resolution and encoded to 256 tokens
64
+ each
65
+ - Total input context of 128K tokens for the 4B, 12B, and 27B sizes, and
66
+ 32K tokens for the 1B size
67
+
68
+ - **Output:**
69
+ - Generated text in response to the input, such as an answer to a
70
+ question, analysis of image content, or a summary of a document
71
+ - Total output context of 8192 tokens
72
+
73
+ ### Usage
74
+
75
+ Below, there are some code snippets on how to get quickly started with running the model. First, install the Transformers library. Gemma 3 is supported starting from transformers 4.50.0.
76
+
77
+ ```sh
78
+ $ pip install -U transformers
79
+ ```
80
+
81
+ Then, copy the snippet from the section that is relevant for your use case.
82
+
83
+ #### Running with the `pipeline` API
84
+
85
+ You can initialize the model and processor for inference with `pipeline` as follows.
86
+
87
+ ```python
88
+ from transformers import pipeline
89
+ import torch
90
+
91
+ pipe = pipeline(
92
+ "image-text-to-text",
93
+ model="google/gemma-3-4b-it",
94
+ device="cuda",
95
+ torch_dtype=torch.bfloat16
96
+ )
97
+ ```
98
+
99
+ With instruction-tuned models, you need to use chat templates to process our inputs first. Then, you can pass it to the pipeline.
100
+
101
+ ```python
102
+ messages = [
103
+ {
104
+ "role": "system",
105
+ "content": [{"type": "text", "text": "You are a helpful assistant."}]
106
+ },
107
+ {
108
+ "role": "user",
109
+ "content": [
110
+ {"type": "image", "url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/p-blog/candy.JPG"},
111
+ {"type": "text", "text": "What animal is on the candy?"}
112
+ ]
113
+ }
114
+ ]
115
+
116
+ output = pipe(text=messages, max_new_tokens=200)
117
+ print(output[0]["generated_text"][-1]["content"])
118
+ # Okay, let's take a look!
119
+ # Based on the image, the animal on the candy is a **turtle**.
120
+ # You can see the shell shape and the head and legs.
121
+ ```
122
+
123
+ #### Running the model on a single/multi GPU
124
+
125
+ ```python
126
+ # pip install accelerate
127
+
128
+ from transformers import AutoProcessor, Gemma3ForConditionalGeneration
129
+ from PIL import Image
130
+ import requests
131
+ import torch
132
+
133
+ model_id = "google/gemma-3-4b-it"
134
+
135
+ model = Gemma3ForConditionalGeneration.from_pretrained(
136
+ model_id, device_map="auto"
137
+ ).eval()
138
+
139
+ processor = AutoProcessor.from_pretrained(model_id)
140
+
141
+ messages = [
142
+ {
143
+ "role": "system",
144
+ "content": [{"type": "text", "text": "You are a helpful assistant."}]
145
+ },
146
+ {
147
+ "role": "user",
148
+ "content": [
149
+ {"type": "image", "image": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/bee.jpg"},
150
+ {"type": "text", "text": "Describe this image in detail."}
151
+ ]
152
+ }
153
+ ]
154
+
155
+ inputs = processor.apply_chat_template(
156
+ messages, add_generation_prompt=True, tokenize=True,
157
+ return_dict=True, return_tensors="pt"
158
+ ).to(model.device, dtype=torch.bfloat16)
159
+
160
+ input_len = inputs["input_ids"].shape[-1]
161
+
162
+ with torch.inference_mode():
163
+ generation = model.generate(**inputs, max_new_tokens=100, do_sample=False)
164
+ generation = generation[0][input_len:]
165
+
166
+ decoded = processor.decode(generation, skip_special_tokens=True)
167
+ print(decoded)
168
+
169
+ # **Overall Impression:** The image is a close-up shot of a vibrant garden scene,
170
+ # focusing on a cluster of pink cosmos flowers and a busy bumblebee.
171
+ # It has a slightly soft, natural feel, likely captured in daylight.
172
+ ```
173
+
174
+
175
+ ### Citation
176
+
177
+ ```none
178
+ @article{gemma_2025,
179
+ title={Gemma 3},
180
+ url={https://goo.gle/Gemma3Report},
181
+ publisher={Kaggle},
182
+ author={Gemma Team},
183
+ year={2025}
184
+ }
185
+ ```
186
+
187
+ ## Model Data
188
+
189
+ Data used for model training and how the data was processed.
190
+
191
+ ### Training Dataset
192
+
193
+ These models were trained on a dataset of text data that includes a wide variety
194
+ of sources. The 27B model was trained with 14 trillion tokens, the 12B model was
195
+ trained with 12 trillion tokens, 4B model was trained with 4 trillion tokens and
196
+ 1B with 2 trillion tokens. Here are the key components:
197
+
198
+ - Web Documents: A diverse collection of web text ensures the model is
199
+ exposed to a broad range of linguistic styles, topics, and vocabulary. The
200
+ training dataset includes content in over 140 languages.
201
+ - Code: Exposing the model to code helps it to learn the syntax and
202
+ patterns of programming languages, which improves its ability to generate
203
+ code and understand code-related questions.
204
+ - Mathematics: Training on mathematical text helps the model learn logical
205
+ reasoning, symbolic representation, and to address mathematical queries.
206
+ - Images: A wide range of images enables the model to perform image
207
+ analysis and visual data extraction tasks.
208
+
209
+ The combination of these diverse data sources is crucial for training a powerful
210
+ multimodal model that can handle a wide variety of different tasks and data
211
+ formats.
212
+
213
+ ### Data Preprocessing
214
+
215
+ Here are the key data cleaning and filtering methods applied to the training
216
+ data:
217
+
218
+ - CSAM Filtering: Rigorous CSAM (Child Sexual Abuse Material) filtering
219
+ was applied at multiple stages in the data preparation process to ensure
220
+ the exclusion of harmful and illegal content.
221
+ - Sensitive Data Filtering: As part of making Gemma pre-trained models
222
+ safe and reliable, automated techniques were used to filter out certain
223
+ personal information and other sensitive data from training sets.
224
+ - Additional methods: Filtering based on content quality and safety in
225
+ line with [our policies][safety-policies].
226
+
227
+ ## Implementation Information
228
+
229
+ Details about the model internals.
230
+
231
+ ### Hardware
232
+
233
+ Gemma was trained using [Tensor Processing Unit (TPU)][tpu] hardware (TPUv4p,
234
+ TPUv5p and TPUv5e). Training vision-language models (VLMS) requires significant
235
+ computational power. TPUs, designed specifically for matrix operations common in
236
+ machine learning, offer several advantages in this domain:
237
+
238
+ - Performance: TPUs are specifically designed to handle the massive
239
+ computations involved in training VLMs. They can speed up training
240
+ considerably compared to CPUs.
241
+ - Memory: TPUs often come with large amounts of high-bandwidth memory,
242
+ allowing for the handling of large models and batch sizes during training.
243
+ This can lead to better model quality.
244
+ - Scalability: TPU Pods (large clusters of TPUs) provide a scalable
245
+ solution for handling the growing complexity of large foundation models.
246
+ You can distribute training across multiple TPU devices for faster and more
247
+ efficient processing.
248
+ - Cost-effectiveness: In many scenarios, TPUs can provide a more
249
+ cost-effective solution for training large models compared to CPU-based
250
+ infrastructure, especially when considering the time and resources saved
251
+ due to faster training.
252
+ - These advantages are aligned with
253
+ [Google's commitments to operate sustainably][sustainability].
254
+
255
+ ### Software
256
+
257
+ Training was done using [JAX][jax] and [ML Pathways][ml-pathways].
258
+
259
+ JAX allows researchers to take advantage of the latest generation of hardware,
260
+ including TPUs, for faster and more efficient training of large models. ML
261
+ Pathways is Google's latest effort to build artificially intelligent systems
262
+ capable of generalizing across multiple tasks. This is specially suitable for
263
+ foundation models, including large language models like these ones.
264
+
265
+ Together, JAX and ML Pathways are used as described in the
266
+ [paper about the Gemini family of models][gemini-2-paper]; *"the 'single
267
+ controller' programming model of Jax and Pathways allows a single Python
268
+ process to orchestrate the entire training run, dramatically simplifying the
269
+ development workflow."*
270
+
271
+ ## Evaluation
272
+
273
+ Model evaluation metrics and results.
274
+
275
+ ### Benchmark Results
276
+
277
+ These models were evaluated against a large collection of different datasets and
278
+ metrics to cover different aspects of text generation:
279
+
280
+ #### Reasoning and factuality
281
+
282
+ | Benchmark | Metric | Gemma 3 PT 1B | Gemma 3 PT 4B | Gemma 3 PT 12B | Gemma 3 PT 27B |
283
+ | ------------------------------ |----------------|:--------------:|:-------------:|:--------------:|:--------------:|
284
+ | [HellaSwag][hellaswag] | 10-shot | 62.3 | 77.2 | 84.2 | 85.6 |
285
+ | [BoolQ][boolq] | 0-shot | 63.2 | 72.3 | 78.8 | 82.4 |
286
+ | [PIQA][piqa] | 0-shot | 73.8 | 79.6 | 81.8 | 83.3 |
287
+ | [SocialIQA][socialiqa] | 0-shot | 48.9 | 51.9 | 53.4 | 54.9 |
288
+ | [TriviaQA][triviaqa] | 5-shot | 39.8 | 65.8 | 78.2 | 85.5 |
289
+ | [Natural Questions][naturalq] | 5-shot | 9.48 | 20.0 | 31.4 | 36.1 |
290
+ | [ARC-c][arc] | 25-shot | 38.4 | 56.2 | 68.9 | 70.6 |
291
+ | [ARC-e][arc] | 0-shot | 73.0 | 82.4 | 88.3 | 89.0 |
292
+ | [WinoGrande][winogrande] | 5-shot | 58.2 | 64.7 | 74.3 | 78.8 |
293
+ | [BIG-Bench Hard][bbh] | few-shot | 28.4 | 50.9 | 72.6 | 77.7 |
294
+ | [DROP][drop] | 1-shot | 42.4 | 60.1 | 72.2 | 77.2 |
295
+
296
+ [hellaswag]: https://arxiv.org/abs/1905.07830
297
+ [boolq]: https://arxiv.org/abs/1905.10044
298
+ [piqa]: https://arxiv.org/abs/1911.11641
299
+ [socialiqa]: https://arxiv.org/abs/1904.09728
300
+ [triviaqa]: https://arxiv.org/abs/1705.03551
301
+ [naturalq]: https://github.com/google-research-datasets/natural-questions
302
+ [arc]: https://arxiv.org/abs/1911.01547
303
+ [winogrande]: https://arxiv.org/abs/1907.10641
304
+ [bbh]: https://paperswithcode.com/dataset/bbh
305
+ [drop]: https://arxiv.org/abs/1903.00161
306
+
307
+ #### STEM and code
308
+
309
+ | Benchmark | Metric | Gemma 3 PT 4B | Gemma 3 PT 12B | Gemma 3 PT 27B |
310
+ | ------------------------------ |----------------|:-------------:|:--------------:|:--------------:|
311
+ | [MMLU][mmlu] | 5-shot | 59.6 | 74.5 | 78.6 |
312
+ | [MMLU][mmlu] (Pro COT) | 5-shot | 29.2 | 45.3 | 52.2 |
313
+ | [AGIEval][agieval] | 3-5-shot | 42.1 | 57.4 | 66.2 |
314
+ | [MATH][math] | 4-shot | 24.2 | 43.3 | 50.0 |
315
+ | [GSM8K][gsm8k] | 8-shot | 38.4 | 71.0 | 82.6 |
316
+ | [GPQA][gpqa] | 5-shot | 15.0 | 25.4 | 24.3 |
317
+ | [MBPP][mbpp] | 3-shot | 46.0 | 60.4 | 65.6 |
318
+ | [HumanEval][humaneval] | 0-shot | 36.0 | 45.7 | 48.8 |
319
+
320
+ [mmlu]: https://arxiv.org/abs/2009.03300
321
+ [agieval]: https://arxiv.org/abs/2304.06364
322
+ [math]: https://arxiv.org/abs/2103.03874
323
+ [gsm8k]: https://arxiv.org/abs/2110.14168
324
+ [gpqa]: https://arxiv.org/abs/2311.12022
325
+ [mbpp]: https://arxiv.org/abs/2108.07732
326
+ [humaneval]: https://arxiv.org/abs/2107.03374
327
+
328
+ #### Multilingual
329
+
330
+ | Benchmark | Gemma 3 PT 1B | Gemma 3 PT 4B | Gemma 3 PT 12B | Gemma 3 PT 27B |
331
+ | ------------------------------------ |:-------------:|:-------------:|:--------------:|:--------------:|
332
+ | [MGSM][mgsm] | 2.04 | 34.7 | 64.3 | 74.3 |
333
+ | [Global-MMLU-Lite][global-mmlu-lite] | 24.9 | 57.0 | 69.4 | 75.7 |
334
+ | [WMT24++][wmt24pp] (ChrF) | 36.7 | 48.4 | 53.9 | 55.7 |
335
+ | [FloRes][flores] | 29.5 | 39.2 | 46.0 | 48.8 |
336
+ | [XQuAD][xquad] (all) | 43.9 | 68.0 | 74.5 | 76.8 |
337
+ | [ECLeKTic][eclektic] | 4.69 | 11.0 | 17.2 | 24.4 |
338
+ | [IndicGenBench][indicgenbench] | 41.4 | 57.2 | 61.7 | 63.4 |
339
+
340
+ [mgsm]: https://arxiv.org/abs/2210.03057
341
+ [flores]: https://arxiv.org/abs/2106.03193
342
+ [xquad]: https://arxiv.org/abs/1910.11856v3
343
+ [global-mmlu-lite]: https://huggingface.co/datasets/CohereForAI/Global-MMLU-Lite
344
+ [wmt24pp]: https://arxiv.org/abs/2502.12404v1
345
+ [eclektic]: https://arxiv.org/abs/2502.21228
346
+ [indicgenbench]: https://arxiv.org/abs/2404.16816
347
+
348
+ #### Multimodal
349
+
350
+ | Benchmark | Gemma 3 PT 4B | Gemma 3 PT 12B | Gemma 3 PT 27B |
351
+ | ------------------------------ |:-------------:|:--------------:|:--------------:|
352
+ | [COCOcap][coco-cap] | 102 | 111 | 116 |
353
+ | [DocVQA][docvqa] (val) | 72.8 | 82.3 | 85.6 |
354
+ | [InfoVQA][info-vqa] (val) | 44.1 | 54.8 | 59.4 |
355
+ | [MMMU][mmmu] (pt) | 39.2 | 50.3 | 56.1 |
356
+ | [TextVQA][textvqa] (val) | 58.9 | 66.5 | 68.6 |
357
+ | [RealWorldQA][realworldqa] | 45.5 | 52.2 | 53.9 |
358
+ | [ReMI][remi] | 27.3 | 38.5 | 44.8 |
359
+ | [AI2D][ai2d] | 63.2 | 75.2 | 79.0 |
360
+ | [ChartQA][chartqa] | 63.6 | 74.7 | 76.3 |
361
+ | [VQAv2][vqav2] | 63.9 | 71.2 | 72.9 |
362
+ | [BLINK][blinkvqa] | 38.0 | 35.9 | 39.6 |
363
+ | [OKVQA][okvqa] | 51.0 | 58.7 | 60.2 |
364
+ | [TallyQA][tallyqa] | 42.5 | 51.8 | 54.3 |
365
+ | [SpatialSense VQA][ss-vqa] | 50.9 | 60.0 | 59.4 |
366
+ | [CountBenchQA][countbenchqa] | 26.1 | 17.8 | 68.0 |
367
+
368
+ [coco-cap]: https://cocodataset.org/#home
369
+ [docvqa]: https://www.docvqa.org/
370
+ [info-vqa]: https://arxiv.org/abs/2104.12756
371
+ [mmmu]: https://arxiv.org/abs/2311.16502
372
+ [textvqa]: https://textvqa.org/
373
+ [realworldqa]: https://paperswithcode.com/dataset/realworldqa
374
+ [remi]: https://arxiv.org/html/2406.09175v1
375
+ [ai2d]: https://allenai.org/data/diagrams
376
+ [chartqa]: https://arxiv.org/abs/2203.10244
377
+ [vqav2]: https://visualqa.org/index.html
378
+ [blinkvqa]: https://arxiv.org/abs/2404.12390
379
+ [okvqa]: https://okvqa.allenai.org/
380
+ [tallyqa]: https://arxiv.org/abs/1810.12440
381
+ [ss-vqa]: https://arxiv.org/abs/1908.02660
382
+ [countbenchqa]: https://github.com/google-research/big_vision/blob/main/big_vision/datasets/countbenchqa/
383
+
384
+ ## Ethics and Safety
385
+
386
+ Ethics and safety evaluation approach and results.
387
+
388
+ ### Evaluation Approach
389
+
390
+ Our evaluation methods include structured evaluations and internal red-teaming
391
+ testing of relevant content policies. Red-teaming was conducted by a number of
392
+ different teams, each with different goals and human evaluation metrics. These
393
+ models were evaluated against a number of different categories relevant to
394
+ ethics and safety, including:
395
+
396
+ - **Child Safety**: Evaluation of text-to-text and image to text prompts
397
+ covering child safety policies, including child sexual abuse and
398
+ exploitation.
399
+ - **Content Safety:** Evaluation of text-to-text and image to text prompts
400
+ covering safety policies including, harassment, violence and gore, and hate
401
+ speech.
402
+ - **Representational Harms**: Evaluation of text-to-text and image to text
403
+ prompts covering safety policies including bias, stereotyping, and harmful
404
+ associations or inaccuracies.
405
+
406
+ In addition to development level evaluations, we conduct "assurance
407
+ evaluations" which are our 'arms-length' internal evaluations for responsibility
408
+ governance decision making. They are conducted separately from the model
409
+ development team, to inform decision making about release. High level findings
410
+ are fed back to the model team, but prompt sets are held-out to prevent
411
+ overfitting and preserve the results' ability to inform decision making.
412
+ Assurance evaluation results are reported to our Responsibility & Safety Council
413
+ as part of release review.
414
+
415
+ ### Evaluation Results
416
+
417
+ For all areas of safety testing, we saw major improvements in the categories of
418
+ child safety, content safety, and representational harms relative to previous
419
+ Gemma models. All testing was conducted without safety filters to evaluate the
420
+ model capabilities and behaviors. For both text-to-text and image-to-text, and
421
+ across all model sizes, the model produced minimal policy violations, and showed
422
+ significant improvements over previous Gemma models' performance with respect
423
+ to ungrounded inferences. A limitation of our evaluations was they included only
424
+ English language prompts.
425
+
426
+ ## Usage and Limitations
427
+
428
+ These models have certain limitations that users should be aware of.
429
+
430
+ ### Intended Usage
431
+
432
+ Open vision-language models (VLMs) models have a wide range of applications
433
+ across various industries and domains. The following list of potential uses is
434
+ not comprehensive. The purpose of this list is to provide contextual information
435
+ about the possible use-cases that the model creators considered as part of model
436
+ training and development.
437
+
438
+ - Content Creation and Communication
439
+ - Text Generation: These models can be used to generate creative text
440
+ formats such as poems, scripts, code, marketing copy, and email drafts.
441
+ - Chatbots and Conversational AI: Power conversational interfaces
442
+ for customer service, virtual assistants, or interactive applications.
443
+ - Text Summarization: Generate concise summaries of a text corpus,
444
+ research papers, or reports.
445
+ - Image Data Extraction: These models can be used to extract,
446
+ interpret, and summarize visual data for text communications.
447
+ - Research and Education
448
+ - Natural Language Processing (NLP) and VLM Research: These
449
+ models can serve as a foundation for researchers to experiment with VLM
450
+ and NLP techniques, develop algorithms, and contribute to the
451
+ advancement of the field.
452
+ - Language Learning Tools: Support interactive language learning
453
+ experiences, aiding in grammar correction or providing writing practice.
454
+ - Knowledge Exploration: Assist researchers in exploring large
455
+ bodies of text by generating summaries or answering questions about
456
+ specific topics.
457
+
458
+ ### Limitations
459
+
460
+ - Training Data
461
+ - The quality and diversity of the training data significantly
462
+ influence the model's capabilities. Biases or gaps in the training data
463
+ can lead to limitations in the model's responses.
464
+ - The scope of the training dataset determines the subject areas
465
+ the model can handle effectively.
466
+ - Context and Task Complexity
467
+ - Models are better at tasks that can be framed with clear
468
+ prompts and instructions. Open-ended or highly complex tasks might be
469
+ challenging.
470
+ - A model's performance can be influenced by the amount of context
471
+ provided (longer context generally leads to better outputs, up to a
472
+ certain point).
473
+ - Language Ambiguity and Nuance
474
+ - Natural language is inherently complex. Models might struggle
475
+ to grasp subtle nuances, sarcasm, or figurative language.
476
+ - Factual Accuracy
477
+ - Models generate responses based on information they learned
478
+ from their training datasets, but they are not knowledge bases. They
479
+ may generate incorrect or outdated factual statements.
480
+ - Common Sense
481
+ - Models rely on statistical patterns in language. They might
482
+ lack the ability to apply common sense reasoning in certain situations.
483
+
484
+ ### Ethical Considerations and Risks
485
+
486
+ The development of vision-language models (VLMs) raises several ethical
487
+ concerns. In creating an open model, we have carefully considered the following:
488
+
489
+ - Bias and Fairness
490
+ - VLMs trained on large-scale, real-world text and image data can
491
+ reflect socio-cultural biases embedded in the training material. These
492
+ models underwent careful scrutiny, input data pre-processing described
493
+ and posterior evaluations reported in this card.
494
+ - Misinformation and Misuse
495
+ - VLMs can be misused to generate text that is false, misleading,
496
+ or harmful.
497
+ - Guidelines are provided for responsible use with the model, see the
498
+ [Responsible Generative AI Toolkit][rai-toolkit].
499
+ - Transparency and Accountability:
500
+ - This model card summarizes details on the models' architecture,
501
+ capabilities, limitations, and evaluation processes.
502
+ - A responsibly developed open model offers the opportunity to
503
+ share innovation by making VLM technology accessible to developers and
504
+ researchers across the AI ecosystem.
505
+
506
+ Risks identified and mitigations:
507
+
508
+ - **Perpetuation of biases**: It's encouraged to perform continuous
509
+ monitoring (using evaluation metrics, human review) and the exploration of
510
+ de-biasing techniques during model training, fine-tuning, and other use
511
+ cases.
512
+ - **Generation of harmful content**: Mechanisms and guidelines for content
513
+ safety are essential. Developers are encouraged to exercise caution and
514
+ implement appropriate content safety safeguards based on their specific
515
+ product policies and application use cases.
516
+ - **Misuse for malicious purposes**: Technical limitations and developer
517
+ and end-user education can help mitigate against malicious applications of
518
+ VLMs. Educational resources and reporting mechanisms for users to flag
519
+ misuse are provided. Prohibited uses of Gemma models are outlined in the
520
+ [Gemma Prohibited Use Policy][prohibited-use].
521
+ - **Privacy violations**: Models were trained on data filtered for removal
522
+ of certain personal information and other sensitive data. Developers are
523
+ encouraged to adhere to privacy regulations with privacy-preserving
524
+ techniques.
525
+
526
+ ### Benefits
527
+
528
+ At the time of release, this family of models provides high-performance open
529
+ vision-language model implementations designed from the ground up for
530
+ responsible AI development compared to similarly sized models.
531
+
532
+ Using the benchmark evaluation metrics described in this document, these models
533
+ have shown to provide superior performance to other, comparably-sized open model
534
+ alternatives.
535
+
536
+ [g3-tech-report]: https://goo.gle/Gemma3Report
537
+ [rai-toolkit]: https://ai.google.dev/responsible
538
+ [kaggle-gemma]: https://www.kaggle.com/models/google/gemma-3
539
+ [vertex-mg-gemma3]: https://console.cloud.google.com/vertex-ai/publishers/google/model-garden/gemma3
540
+ [terms]: https://ai.google.dev/gemma/terms
541
+ [safety-policies]: https://ai.google/static/documents/ai-responsibility-update-published-february-2025.pdf
542
+ [prohibited-use]: https://ai.google.dev/gemma/prohibited_use_policy
543
+ [tpu]: https://cloud.google.com/tpu/docs/intro-to-tpu
544
+ [sustainability]: https://sustainability.google/operating-sustainably/
545
+ [jax]: https://github.com/jax-ml/jax
546
+ [ml-pathways]: https://blog.google/technology/ai/introducing-pathways-next-generation-ai-architecture/
547
+ [sustainability]: https://sustainability.google/operating-sustainably/
548
+ [gemini-2-paper]: https://arxiv.org/abs/2312.11805
added_tokens.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "<image_soft_token>": 262144
3
+ }
chat_template.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "chat_template": "{{ bos_token }}\n{%- if messages[0]['role'] == 'system' -%}\n {%- if messages[0]['content'] is string -%}\n {%- set first_user_prefix = messages[0]['content'] + '\n\n' -%}\n {%- else -%}\n {%- set first_user_prefix = messages[0]['content'][0]['text'] + '\n\n' -%}\n {%- endif -%}\n {%- set loop_messages = messages[1:] -%}\n{%- else -%}\n {%- set first_user_prefix = \"\" -%}\n {%- set loop_messages = messages -%}\n{%- endif -%}\n{%- for message in loop_messages -%}\n {%- if (message['role'] == 'user') != (loop.index0 % 2 == 0) -%}\n {{ raise_exception(\"Conversation roles must alternate user/assistant/user/assistant/...\") }}\n {%- endif -%}\n {%- if (message['role'] == 'assistant') -%}\n {%- set role = \"model\" -%}\n {%- else -%}\n {%- set role = message['role'] -%}\n {%- endif -%}\n {{ '<start_of_turn>' + role + '\n' + (first_user_prefix if loop.first else \"\") }}\n {%- if message['content'] is string -%}\n {{ message['content'] | trim }}\n {%- elif message['content'] is iterable -%}\n {%- for item in message['content'] -%}\n {%- if item['type'] == 'image' -%}\n {{ '<start_of_image>' }}\n {%- elif item['type'] == 'text' -%}\n {{ item['text'] | trim }}\n {%- endif -%}\n {%- endfor -%}\n {%- else -%}\n {{ raise_exception(\"Invalid content type\") }}\n {%- endif -%}\n {{ '<end_of_turn>\n' }}\n{%- endfor -%}\n{%- if add_generation_prompt -%}\n {{'<start_of_turn>model\n'}}\n{%- endif -%}\n"
3
+ }
config.json ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "Gemma3ForConditionalGeneration"
4
+ ],
5
+ "boi_token_index": 255999,
6
+ "eoi_token_index": 256000,
7
+ "eos_token_id": [
8
+ 1,
9
+ 106
10
+ ],
11
+ "image_token_index": 262144,
12
+ "initializer_range": 0.02,
13
+ "mm_tokens_per_image": 256,
14
+ "model_type": "gemma3",
15
+ "text_config": {
16
+ "hidden_size": 2560,
17
+ "intermediate_size": 10240,
18
+ "model_type": "gemma3_text",
19
+ "num_hidden_layers": 34,
20
+ "rope_scaling": {
21
+ "factor": 8.0,
22
+ "rope_type": "linear"
23
+ },
24
+ "sliding_window": 1024
25
+ },
26
+ "torch_dtype": "bfloat16",
27
+ "transformers_version": "4.50.0.dev0",
28
+ "vision_config": {
29
+ "hidden_size": 1152,
30
+ "image_size": 896,
31
+ "intermediate_size": 4304,
32
+ "model_type": "siglip_vision_model",
33
+ "num_attention_heads": 16,
34
+ "num_hidden_layers": 27,
35
+ "patch_size": 14,
36
+ "vision_use_head": false
37
+ },
38
+ "quantization_config": {
39
+ "config_groups": {
40
+ "group_0": {
41
+ "input_activations": null,
42
+ "output_activations": null,
43
+ "targets": [
44
+ "Linear"
45
+ ],
46
+ "weights": {
47
+ "group_size": 32,
48
+ "num_bits": 4,
49
+ "strategy": "group",
50
+ "symmetric": true,
51
+ "type": "int"
52
+ }
53
+ }
54
+ },
55
+ "format": "pack-quantized",
56
+ "ignore": [
57
+ "lm_head",
58
+ "re:vision_tower.*"
59
+ ],
60
+ "quant_method": "compressed-tensors",
61
+ "quantization_status": "compressed"
62
+ }
63
+ }
generation_config.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 2,
3
+ "cache_implementation": "hybrid",
4
+ "do_sample": true,
5
+ "eos_token_id": [
6
+ 1,
7
+ 106
8
+ ],
9
+ "pad_token_id": 0,
10
+ "top_k": 64,
11
+ "top_p": 0.95,
12
+ "transformers_version": "4.50.0.dev0"
13
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a3954b6541259544fc79be8738ffdff36ee8a406e6d769aed0224fcffba07283
3
+ size 3987918744
preprocessor_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_convert_rgb": null,
3
+ "do_normalize": true,
4
+ "do_pan_and_scan": null,
5
+ "do_rescale": true,
6
+ "do_resize": true,
7
+ "image_mean": [
8
+ 0.5,
9
+ 0.5,
10
+ 0.5
11
+ ],
12
+ "image_processor_type": "Gemma3ImageProcessor",
13
+ "image_seq_length": 256,
14
+ "image_std": [
15
+ 0.5,
16
+ 0.5,
17
+ 0.5
18
+ ],
19
+ "pan_and_scan_max_num_crops": null,
20
+ "pan_and_scan_min_crop_size": null,
21
+ "pan_and_scan_min_ratio_to_activate": null,
22
+ "processor_class": "Gemma3Processor",
23
+ "resample": 2,
24
+ "rescale_factor": 0.00392156862745098,
25
+ "size": {
26
+ "height": 896,
27
+ "width": 896
28
+ }
29
+ }
processor_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "image_seq_length": 256,
3
+ "processor_class": "Gemma3Processor"
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "boi_token": "<start_of_image>",
3
+ "bos_token": {
4
+ "content": "<bos>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false
9
+ },
10
+ "eoi_token": "<end_of_image>",
11
+ "eos_token": {
12
+ "content": "<eos>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false
17
+ },
18
+ "image_token": "<image_soft_token>",
19
+ "pad_token": {
20
+ "content": "<pad>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false
25
+ },
26
+ "unk_token": {
27
+ "content": "<unk>",
28
+ "lstrip": false,
29
+ "normalized": false,
30
+ "rstrip": false,
31
+ "single_word": false
32
+ }
33
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4667f2089529e8e7657cfb6d1c19910ae71ff5f28aa7ab2ff2763330affad795
3
+ size 33384568
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1299c11d7cf632ef3b4e11937501358ada021bbdf7c47638d13c0ee982f2e79c
3
+ size 4689074
tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff