gemma-3-4b-it-int4-awq / convert_flax.py
gaunernst's picture
update script
bd9151c
import argparse
import json
from pathlib import Path
import jax
import jax.numpy as jnp
import numpy as np
import orbax.checkpoint as ocp
from safetensors.flax import save_file
from tqdm import tqdm
SIGLIP_PREFIX = "SigLiPFromPatches_0/siglip_encoder"
def flatten(x: np.ndarray, start: int = 0, end: int = -1):
if start < 0:
start += x.ndim
if end < 0:
end += x.ndim
new_shape = x.shape[:start] + (-1,) + x.shape[end + 1 :]
return x.reshape(new_shape)
def unflatten(x: np.ndarray, dim: int, sizes: tuple[int, ...]):
new_shape = x.shape[:dim] + tuple(sizes) + x.shape[dim + 1 :]
return x.reshape(new_shape)
# correct quantization parameters mean quantization error = 0 (or close to 0)
def check_groups(groups: np.ndarray, scales: np.ndarray, dim: int):
# groups: (a, b, c, 32, d, e, f)
# scales: (a, b, c, 1, d, e, f)
inv_scale = 1.0 / scales.clip(1e-12)
q_group = np.round(groups * inv_scale)
max_diff = np.abs(q_group * scales - groups).max(dim, keepdims=True)
return max_diff < 1e-6, max_diff
def find_scales(w: np.ndarray, dim: int):
w = unflatten(w, dim, (-1, 32))
group_range = w.max(dim + 1, keepdims=True) - w.min(dim + 1, keepdims=True)
scales = np.zeros_like(group_range)
for q in range(15, 0, -1):
try_scale = group_range / q
ok, _ = check_groups(w, try_scale, dim + 1)
scales[ok] = try_scale[ok]
ok, _ = check_groups(w, scales, dim + 1)
assert ok.all()
return scales.squeeze(dim + 1)
def convert_siglip(params, num_layers: int):
state_dict = dict()
def convert_layer(prefix: str, layer: dict[str, np.ndarray]):
bias = layer["bias"]
if "kernel" in layer:
w = layer["kernel"]
if w.ndim == 2: # linear layer
w = w.T
elif w.ndim == 3: # attn projection
# qkv projection - (dim, num_heads, head_dim)
if bias.ndim == 2:
w = flatten(w, 1, 2).T
bias = bias.reshape(-1)
# o projection - (num_heads, head_dim, dim)
elif bias.ndim == 1:
w = flatten(w, 0, 1).T
elif w.ndim == 4: # conv2d layer
w = w.transpose(3, 2, 0, 1)
else:
raise RuntimeError(f"Unsupported {w.shape=}")
elif "scale" in layer: # layer norm
w = layer["scale"]
else:
raise RuntimeError
state_dict[f"{prefix}weight"] = w
state_dict[f"{prefix}bias"] = bias
convert_layer("embeddings.patch_embedding.", params[f"{SIGLIP_PREFIX}/embedding"])
state_dict["embeddings.position_embedding.weight"] = params[SIGLIP_PREFIX]["pos_embedding"].squeeze(0)
convert_layer("post_layernorm.", params[f"{SIGLIP_PREFIX}/Transformer/encoder_norm"])
for layer_idx in range(num_layers):
prefix = f"encoder.layers.{layer_idx}."
layer_prefix = f"{SIGLIP_PREFIX}/Transformer/encoderblock_{layer_idx}/"
convert_layer(f"{prefix}layer_norm1.", params[f"{layer_prefix}LayerNorm_0"])
convert_layer(f"{prefix}layer_norm2.", params[f"{layer_prefix}LayerNorm_1"])
attn_prefix = f"{layer_prefix}MultiHeadDotProductAttention_0/"
convert_layer(f"{prefix}self_attn.q_proj.", params[f"{attn_prefix}query"])
convert_layer(f"{prefix}self_attn.k_proj.", params[f"{attn_prefix}key"])
convert_layer(f"{prefix}self_attn.v_proj.", params[f"{attn_prefix}value"])
convert_layer(f"{prefix}self_attn.out_proj.", params[f"{attn_prefix}out"])
mlp_prefix = f"{layer_prefix}MlpBlock_0/"
convert_layer(f"{prefix}mlp.fc1.", params[f"{mlp_prefix}Dense_0"])
convert_layer(f"{prefix}mlp.fc2.", params[f"{mlp_prefix}Dense_1"])
return state_dict
# convert to HF format first, then apply quantization
def convert_to_hf(path: Path):
path = path.absolute() # orbax only works with absolute path
ckpt = ocp.StandardCheckpointer()
metadata = dict(ckpt.metadata(path))
metadata = jax.tree.map(ocp.utils.to_shape_dtype_struct, metadata)
num_layers = num_siglip_layers = 0
while f"transformer/layer_{num_layers}/attn/_key_norm" in metadata:
num_layers += 1
while f"{SIGLIP_PREFIX}/Transformer/encoderblock_{num_siglip_layers}/LayerNorm_0" in metadata:
num_siglip_layers += 1
print(f"{num_layers=}")
print(f"{num_siglip_layers=}")
# NOTE: all gemma3 models use tied embeddings, even for the 27B version.
params = ckpt.restore(path)
state_dict = dict()
if num_siglip_layers > 0:
# HF append unused tokens for no reason???
embed = params["transformer/embedder"]["input_embedding"]
params["transformer/embedder"]["input_embedding"] = np.pad(embed, ((0, 64), (0, 0)))
gemma_prefix = "language_model."
prefix = "multi_modal_projector.mm_"
jax_prefix = "transformer/embedder/"
state_dict[f"{prefix}input_projection_weight"] = params[f"{jax_prefix}mm_input_projection"]["w"]
state_dict[f"{prefix}soft_emb_norm.weight"] = params[f"{jax_prefix}mm_soft_embedding_norm"]["scale"]
else:
gemma_prefix = ""
state_dict[f"{gemma_prefix}model.embed_tokens.weight"] = params["transformer/embedder"]["input_embedding"]
state_dict[f"{gemma_prefix}model.norm.weight"] = params["transformer/final_norm"]["scale"]
yield state_dict
for layer_idx in range(num_layers):
jax_prefix = f"transformer/layer_{layer_idx}/"
state_dict = dict()
prefix = f"{gemma_prefix}model.layers.{layer_idx}."
state_dict[f"{prefix}input_layernorm.weight"] = params[f"{jax_prefix}pre_attention_norm"]["scale"]
state_dict[f"{prefix}post_attention_layernorm.weight"] = params[f"{jax_prefix}post_attention_norm"]["scale"]
state_dict[f"{prefix}pre_feedforward_layernorm.weight"] = params[f"{jax_prefix}pre_ffw_norm"]["scale"]
state_dict[f"{prefix}post_feedforward_layernorm.weight"] = params[f"{jax_prefix}post_ffw_norm"]["scale"]
prefix = f"{gemma_prefix}model.layers.{layer_idx}.self_attn."
jax_prefix = f"transformer/layer_{layer_idx}/attn/"
state_dict[f"{prefix}q_norm.weight"] = params[f"{jax_prefix}_query_norm"]["scale"]
state_dict[f"{prefix}k_norm.weight"] = params[f"{jax_prefix}_key_norm"]["scale"]
# (num_heads, hidden_size, head_dim) -> (num_heads * head_dim, hidden_size)
state_dict[f"{prefix}q_proj.weight"] = flatten(params[f"{jax_prefix}q_einsum"]["w"].transpose(0, 2, 1), end=1)
state_dict[f"{prefix}k_proj.weight"] = flatten(
params[f"{jax_prefix}kv_einsum"]["w"][0].transpose(0, 2, 1), end=1
)
state_dict[f"{prefix}v_proj.weight"] = flatten(
params[f"{jax_prefix}kv_einsum"]["w"][1].transpose(0, 2, 1), end=1
)
# (num_heads, head_dim, hidden_size) -> (hidden_size, num_heads * head_dim)
state_dict[f"{prefix}o_proj.weight"] = flatten(params[f"{jax_prefix}attn_vec_einsum"]["w"], end=1).T
prefix = f"{gemma_prefix}model.layers.{layer_idx}.mlp."
jax_prefix = f"transformer/layer_{layer_idx}/mlp/"
state_dict[f"{prefix}gate_proj.weight"] = params[f"{jax_prefix}gating_einsum"]["w"][0]
state_dict[f"{prefix}up_proj.weight"] = params[f"{jax_prefix}gating_einsum"]["w"][1]
state_dict[f"{prefix}down_proj.weight"] = params[f"{jax_prefix}linear"]["w"].T
yield state_dict
# vision tower
if num_siglip_layers > 0:
siglip_state_dict = convert_siglip(params, num_siglip_layers)
for k, v in siglip_state_dict.items():
state_dict[f"vision_tower.vision_model.{k}"] = v
yield state_dict
def convert_awq(state_dict: dict[str, np.ndarray]):
awq_state_dict = dict()
for k, v in state_dict.items():
if (
k.endswith("model.embed_tokens.weight") # AWQ doesn't support INT4 embeddings
or k.startswith(("vision_tower", "multi_modal_projector")) # vision tower is not quantized
or v.ndim == 1
):
awq_state_dict[k] = v.astype(jnp.bfloat16)
continue
assert v.ndim == 2
v = v.T # AWQ transpose the weight
K, N = v.shape
scales = find_scales(v, dim=0) # (K/32, N)
inv_scale = 1 / scales.clip(1e-12)
qweight = np.round(v.reshape(K // 32, 32, N) * inv_scale[:, None])
# AWQ is actually UINT4 (instead of INT4)
# hence, we will shift qweight up by 8 (even though Google AQT only uses [-7,7])
# and set zero_point = 8
qweight = (qweight + 8).astype(np.uint32)
# AWQ pack 8 int4 into UINT32 in the following layout (from high bits to low bits)
# [7 5 3 1 6 4 2 0] along the 2nd dim
qweight = qweight.reshape(K, N // 8, 8)
qweight_packed = (
(qweight[..., 7] << (7 * 4))
| (qweight[..., 5] << (6 * 4))
| (qweight[..., 3] << (5 * 4))
| (qweight[..., 1] << (4 * 4))
| (qweight[..., 6] << (3 * 4))
| (qweight[..., 4] << (2 * 4))
| (qweight[..., 2] << (1 * 4))
| (qweight[..., 0] << (0 * 4))
)
qweight_packed = qweight_packed.view(np.int32).reshape(K, N // 8)
prefix = k.removesuffix(".weight")
awq_state_dict[f"{prefix}.qweight"] = qweight_packed
awq_state_dict[f"{prefix}.qzeros"] = np.full((K // 32, N // 8), 0x8888_8888, dtype=np.uint32).view(np.int32)
awq_state_dict[f"{prefix}.scales"] = scales.astype(jnp.bfloat16)
return awq_state_dict
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--ckpt_dir", required=True, type=Path)
parser.add_argument("--save_dir", required=True, type=Path)
args = parser.parse_args()
args.save_dir.mkdir(parents=True, exist_ok=True)
total_size = 0
weight_map = dict()
state_dict = dict()
size = 0
shard_idx = 0
filename = f"model-{shard_idx + 1:05d}.safetensors"
for sub_state_dict in tqdm(convert_to_hf(args.ckpt_dir)):
sub_state_dict = convert_awq(sub_state_dict)
new_size = sum(v.nbytes for v in sub_state_dict.values())
if size + new_size > 5e9:
save_file(state_dict, args.save_dir / filename)
state_dict = dict()
size = 0
shard_idx += 1
filename = f"model-{shard_idx + 1:05d}.safetensors"
# assume that new_size < 5e9
size += new_size
total_size += new_size
for k, v in sub_state_dict.items():
state_dict[k] = v
weight_map[k] = filename
save_file(state_dict, args.save_dir / filename)
json.dump(
dict(metadata=dict(total_size=total_size), weight_map=weight_map),
open(args.save_dir / "model.safetensors.index.json", "w"),
)