File size: 7,030 Bytes
fc35a48 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
import os
import re
import json
import argparse
import torch
import numpy as np
from utils.parser import *
from utils.grader import *
from utils.python_executor import PythonExecutor
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
def extract_python_block_with_solution(text):
"""
Extract the code block from the text that contains the solution function.
:param text: The text to search for the code block.
:return: The extracted code block.
"""
pattern = r'```python\n(.*?)def solution\(\):\n(.*?)```'
match = re.search(pattern, text, re.DOTALL)
if match:
return match.group(1) + 'def solution():\n' + match.group(2)
else:
return ""
def load_data(args):
"""
Load data from file.
:param args: Arguments.
:return: A list of examples.
"""
if args.data_name != "math":
prompt = open("prompts/gsm8k.md").read()
else:
prompt = open("prompts/math.md").read()
examples = []
with open(f"datasets/{args.data_name}/test.json", "r") as f:
for line in f:
js = json.loads(line)
examples.append(js)
# parse data
samples = []
for example in examples:
idx = example['idx']
example['question'] = parse_question(example, args.data_name)
gt_cot, gt_ans = parse_ground_truth(example, args.data_name)
example["input"] = f"{prompt}\n\nQuestion: {example['question']}\n"
example = {'idx': idx, 'question': example['question'], 'gt_cot': gt_cot, 'gt': gt_ans, 'prompt': example["input"]}
samples.append(example)
return samples
def inference(args):
"""
Inference on the dataset.
:param args: Arguments.
:return: None
"""
# load data
samples = load_data(args)
samples = [sample for i,sample in enumerate(samples) if i%args.world_size==args.rank]
# create directory for saving results
os.makedirs(f'outputs/{args.model_name}/{args.data_name}', exist_ok=True)
# init python executor
executor = PythonExecutor(get_answer_expr='solution()')
# load model
torch.set_default_tensor_type(torch.cuda.HalfTensor)
tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path, trust_remote_code=True,padding_side="left")
try:
tokenizer.pad_token_id = 0
except:
# Deal with CodeGeex-2
pass
llm = AutoModelForCausalLM.from_pretrained(args.model_name_or_path, torch_dtype=torch.float16, device_map="auto",trust_remote_code=True)
#samples = samples[:32]
print("dataset:", args.data_name, "samples:", len(samples))
if len(samples) > 0:
print("=" * 50)
print("sample:", samples[0]['prompt'])
print("=" * 50)
stop_ids = []
stop_words = ["Question","----------------"]
for x in stop_words:
ids = tokenizer.encode(x)
if tokenizer.decode(ids[-1:]) == x:
stop_ids.append(ids[-1])
print("stop ids:", stop_ids)
outputs = []
generation_config = GenerationConfig(num_beams=1,)
for i in range(0, len(samples), args.batch_size):
chunk = [x["prompt"] for x in samples[i:i+args.batch_size]]
if "llama" in args.model_name_or_path.lower() and args.rank==3 and (i==164 or i==328):
for x in chunk:
outputs.append(x)
continue
inputs = tokenizer(chunk, return_tensors="pt",padding=True)
input_ids = inputs["input_ids"].cuda()[:,-args.max_context_length:]
attention_mask = inputs["attention_mask"].cuda()[:,-args.max_context_length:]
with torch.no_grad():
generation_output = llm.generate(
input_ids=input_ids,
attention_mask=attention_mask,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=True,
do_sample=False,
max_new_tokens=args.max_output_length,
eos_token_id=stop_ids,
pad_token_id=0
)
answers = []
for i, a in enumerate(generation_output.sequences):
a = a.tolist()
a = a[input_ids.shape[-1]:]
a = tokenizer.decode(a)
for x in stop_words:
if x in a:
a = a[:a.index(x)]
ans = extract_python_block_with_solution(a)
answers.append(ans)
if i == 0:
print("="*80)
print("Response:\n")
print(a)
print("Program:\n")
print(ans)
print("="*80)
outputs.extend(answers)
print("Rank",args.rank,"Processed Number:",len(outputs),flush=True)
assert len(outputs) == len(samples)
results = [x[0] for x in executor.batch_apply(outputs)]
for result,code,sample in zip(results, outputs, samples):
sample["code"] = code
sample["pred"] = strip_string(result)
# save results
out_file = f"world_size_{args.world_size}_rank_{args.rank}.json"
with open(f"outputs/{args.model_name}/{args.data_name}/{out_file}", "w") as f:
json.dump(samples,f,indent=4)
def eval(args):
"""
Evaluate the results.
:param args: Arguments.
:return: None
"""
# load data
samples = []
for rank in range(args.world_size):
out_file = f"outputs/{args.model_name}/{args.data_name}/world_size_{args.world_size}_rank_{rank}.json"
if not os.path.exists(out_file):
raise FileNotFoundError(f"File {out_file} does not exist.")
samples.extend(json.load(open(out_file,"r")))
print("Dataset:",args.data_name)
print("Model:",args.model_name)
print("Loaded Examples:",len(samples))
scores = []
for x in samples:
scores.append(math_equal(x["gt"],x["pred"]))
print("Mean Score",np.mean(scores))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--data_name", default="math", type=str)
parser.add_argument("--model_name_or_path", default="deepseek/deepseek-coder-1b-python", type=str)
parser.add_argument("--batch_size", default=16, type=int)
parser.add_argument("--max_context_length", default=2048, type=int)
parser.add_argument("--max_output_length", default=512, type=int)
parser.add_argument("--do_inference", action="store_true")
parser.add_argument("--do_eval", action="store_true")
parser.add_argument("--rank", default=0, type=int)
parser.add_argument("--world_size",default=1, type=int)
args = parser.parse_args()
args.model_name = args.model_name_or_path.strip("/").split("/")[-1]
if args.do_inference:
print(args)
inference(args)
elif args.do_eval:
eval(args)
|