File size: 7,030 Bytes
fc35a48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import os
import re
import json
import argparse
import torch
import numpy as np
from utils.parser import *
from utils.grader import *
from utils.python_executor import PythonExecutor
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig


def extract_python_block_with_solution(text):
    """

    Extract the code block from the text that contains the solution function.

    :param text: The text to search for the code block.

    :return: The extracted code block.

    """
    pattern = r'```python\n(.*?)def solution\(\):\n(.*?)```'
    match = re.search(pattern, text, re.DOTALL)
    if match:
        return match.group(1) + 'def solution():\n' + match.group(2)
    else:
        return ""
    
def load_data(args):
    """

    Load data from file.

    :param args: Arguments.

    :return: A list of examples.

    """
    if args.data_name != "math":
        prompt = open("prompts/gsm8k.md").read()
    else:
        prompt = open("prompts/math.md").read()

    examples = []
    with open(f"datasets/{args.data_name}/test.json", "r") as f: 
        for line in f:
            js = json.loads(line)
            examples.append(js)

    # parse data
    samples = []
    for example in examples:
        idx = example['idx']
        example['question'] = parse_question(example, args.data_name)
        gt_cot, gt_ans = parse_ground_truth(example, args.data_name)
        example["input"] = f"{prompt}\n\nQuestion: {example['question']}\n"
        example = {'idx': idx, 'question': example['question'], 'gt_cot': gt_cot, 'gt': gt_ans, 'prompt': example["input"]}
        samples.append(example)  

    return samples

def inference(args):
    """

    Inference on the dataset.

    :param args: Arguments.

    :return: None

    """
    # load data
    samples = load_data(args)
    samples = [sample for i,sample in enumerate(samples) if i%args.world_size==args.rank]

    # create directory for saving results
    os.makedirs(f'outputs/{args.model_name}/{args.data_name}', exist_ok=True)

    # init python executor
    executor = PythonExecutor(get_answer_expr='solution()')

    # load model
    torch.set_default_tensor_type(torch.cuda.HalfTensor)
    tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path, trust_remote_code=True,padding_side="left")
    try:
        tokenizer.pad_token_id = 0
    except:
        # Deal with CodeGeex-2
        pass
    llm = AutoModelForCausalLM.from_pretrained(args.model_name_or_path, torch_dtype=torch.float16, device_map="auto",trust_remote_code=True)

    #samples = samples[:32]
    print("dataset:", args.data_name, "samples:", len(samples))
    if len(samples) > 0:
        print("=" * 50)
        print("sample:", samples[0]['prompt'])
        print("=" * 50)

    stop_ids = []
    stop_words = ["Question","----------------"]
    for x in stop_words:
        ids = tokenizer.encode(x)
        if tokenizer.decode(ids[-1:]) == x:
            stop_ids.append(ids[-1])               
    print("stop ids:", stop_ids)



    outputs = []
    generation_config = GenerationConfig(num_beams=1,)
    for i in range(0, len(samples), args.batch_size):
        chunk = [x["prompt"] for x in samples[i:i+args.batch_size]]
        if "llama" in args.model_name_or_path.lower() and args.rank==3 and (i==164 or i==328):
            for x in chunk:
                outputs.append(x)
            continue
        inputs = tokenizer(chunk, return_tensors="pt",padding=True)
        input_ids = inputs["input_ids"].cuda()[:,-args.max_context_length:]
        attention_mask = inputs["attention_mask"].cuda()[:,-args.max_context_length:]

        with torch.no_grad():
            generation_output = llm.generate(
                input_ids=input_ids,
                attention_mask=attention_mask,
                generation_config=generation_config,
                return_dict_in_generate=True,
                output_scores=True,
                do_sample=False,
                max_new_tokens=args.max_output_length,
                eos_token_id=stop_ids,
                pad_token_id=0
            )

        answers = []

        for i, a in enumerate(generation_output.sequences):
            a = a.tolist()
            a = a[input_ids.shape[-1]:]
            a = tokenizer.decode(a)
            for x in stop_words:
                if x in a:
                    a = a[:a.index(x)]
            ans = extract_python_block_with_solution(a)
            answers.append(ans)
            if i == 0:
                print("="*80)
                print("Response:\n")
                print(a)
                print("Program:\n")
                print(ans)               
                print("="*80)
        outputs.extend(answers)
        print("Rank",args.rank,"Processed Number:",len(outputs),flush=True)

    assert len(outputs) == len(samples)

    results = [x[0] for x in executor.batch_apply(outputs)]
    for result,code,sample in zip(results, outputs, samples):
        sample["code"] = code
        sample["pred"] = strip_string(result)

    # save results
    out_file = f"world_size_{args.world_size}_rank_{args.rank}.json"
    with open(f"outputs/{args.model_name}/{args.data_name}/{out_file}", "w") as f:
        json.dump(samples,f,indent=4)

def eval(args):
    """

    Evaluate the results.

    :param args: Arguments.

    :return: None

    """
    # load data
    samples = []
    for rank in range(args.world_size):
        out_file = f"outputs/{args.model_name}/{args.data_name}/world_size_{args.world_size}_rank_{rank}.json"
        if not os.path.exists(out_file):
            raise FileNotFoundError(f"File {out_file} does not exist.")
        samples.extend(json.load(open(out_file,"r")))
    print("Dataset:",args.data_name)
    print("Model:",args.model_name)
    print("Loaded Examples:",len(samples))
    scores = []
    for x in samples:
        scores.append(math_equal(x["gt"],x["pred"]))
    print("Mean Score",np.mean(scores))



if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--data_name", default="math", type=str)
    parser.add_argument("--model_name_or_path", default="deepseek/deepseek-coder-1b-python", type=str)
    parser.add_argument("--batch_size", default=16, type=int)
    parser.add_argument("--max_context_length", default=2048, type=int)
    parser.add_argument("--max_output_length", default=512, type=int)
    parser.add_argument("--do_inference", action="store_true")
    parser.add_argument("--do_eval", action="store_true")
    parser.add_argument("--rank", default=0, type=int)
    parser.add_argument("--world_size",default=1, type=int)
    args = parser.parse_args()
    
    args.model_name = args.model_name_or_path.strip("/").split("/")[-1]
    if args.do_inference:
        print(args)
        inference(args)
    elif args.do_eval:
        eval(args)