--- language: - en datasets: - mindchain/wikitext2 - yahma/alpaca-cleaned metrics: - perplexity - accuracy base_model: - TinyLlama/TinyLlama_v1.1 model-index: - name: TinyLlama_v1.1_mix_wikitext_alpaca_1bit_BitDistiller_baseline results: - task: type: multiple-choice name: QA Benchmarking dataset: type: allenai/arc name: ARC-Challenge config: challenge split: test metrics: - type: accuracy name: Accuracy value: 0.2150170648464164 - type: accuracy name: Normalized Accuracy value: 0.24744027303754265 - task: type: multiple-choice name: QA Benchmarking dataset: type: hellaswag name: HellaSwag split: test metrics: - type: accuracy name: Accuracy value: 0.2568213503286198 - type: accuracy name: Normalized Accuracy value: 0.253359888468433 - task: type: multiple-choice name: QA Benchmarking dataset: type: piqa name: PIQA split: validation metrics: - type: accuracy name: Accuracy value: 0.5282916213275299 - type: accuracy name: Normalized Accuracy value: 0.5027203482845702 - task: type: multiple-choice name: QA Benchmarking dataset: type: winogrande name: Winogrande split: test metrics: - type: accuracy name: Accuracy value: 0.5122336227308603 - task: type: multiple-choice name: QA Benchmarking dataset: type: aggregated name: QA-Avg metrics: - type: accuracy name: QA Average value: 0.3780991480835666 --- # TinyLlama_v1.1_1bit_BitDistiller This is a 1-bit quantized version of TinyLlama v1.1, trained using BitDistiller with asymmetric quantization and self-distillation (CAKLD) to optimize accuracy retention under extreme compression. The model is fine-tuned on WikiText-2 and Alpaca-cleaned datasets and evaluated on multiple-choice QA benchmarks. Key Features: - 1-bit quantization for ultra-efficient inference. - Asymmetric weight clipping to reduce precision loss. - CAKLD knowledge distillation to preserve performance. - Tested on ARC-Challenge, HellaSwag, PIQA, and Winogrande.