# Example inference code | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
# Load the model | |
tokenizer = AutoTokenizer.from_pretrained("exaler/aaa-2-sql-2") | |
model = AutoModelForCausalLM.from_pretrained("exaler/aaa-2-sql-2") | |
def generate_sql(instruction, input_text): | |
# Format prompt | |
prompt = f"<s>[INST] {instruction}\n\n{input_text} [/INST]" | |
# Generate | |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device) | |
outputs = model.generate( | |
inputs=inputs.input_ids, | |
max_new_tokens=512, | |
temperature=0.0, | |
do_sample=False | |
) | |
response = tokenizer.decode(outputs[0][inputs.input_ids.shape[1]:], skip_special_tokens=True) | |
return response | |