File size: 11,292 Bytes
032c0ea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 |
import os
import argparse
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import OneHotEncoder, StandardScaler
from sklearn.metrics import roc_curve, auc, precision_recall_curve
import statsmodels.api as sm
# import warnings
# warnings.filterwarnings('ignore')
def load_data(file_path):
df = pd.read_csv(file_path, index_col=0)
return df
def explore_data(df):
print("Dataset shape:", df.shape)
print("\nFeature data types:")
print(df.dtypes)
print("\nCheck for missing values:")
print(df.isnull().sum())
# Check class balance for target variable
print("\nTarget variable distribution:")
target_dist = df['is_effective'].value_counts(normalize=True) * 100
print(target_dist)
return df
def analyze_feature_correlations(df):
numeric_cols = df.select_dtypes(include=['int64', 'float64']).columns.tolist()
corr_matrix = df[numeric_cols].corr(method='spearman')
#plt.figure(figsize=(5,5))
sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', linewidths=0.5, fmt='.2f', annot_kws={"size": 8})
plt.title('Feature Correlation Matrix')
plt.tight_layout()
plt.savefig('feature_correlation_matrix.png', dpi=300, bbox_inches='tight')
plt.close()
# Show correlations with target variable
target_corr = corr_matrix['is_effective'].sort_values(ascending=False)
print("Correlations with target variable 'is_effective':")
print(target_corr)
return corr_matrix
def prepare_data(X, y, split_seed=42):
"""
Prepare data for model training by scaling numeric features and encoding categorical features.
Args:
X: DataFrame containing features. Expects indices to be drug-cell_line.
y: Series containing target variable
Returns:
X_train, X_test, y_train, y_test: Train-test split of prepared data
"""
# Assert that indices of X and y are the same
assert X.index.equals(y.index), "X and y must have the same indices"
# Extract drug and cell line info
drug_name = X.index.str.split('_CVCL_').str[0]
cell_line_name = 'CVCL_' + X.index.str.split('_CVCL_').str[1]
cat_cols = X.select_dtypes(include=['object', 'category']).columns.tolist()
num_cols = X.select_dtypes(include=['int64', 'float64']).columns.tolist()
# Create a copy of X to avoid modifying the original
X_processed = X.copy()
scaler = StandardScaler()
if num_cols:
X_processed[num_cols] = scaler.fit_transform(X_processed[num_cols])
if cat_cols:
encoder = OneHotEncoder(sparse_output=False, handle_unknown='ignore', drop='first')
encoded_cats = encoder.fit_transform(X_processed[cat_cols])
feature_names = encoder.get_feature_names_out(cat_cols)
encoded_df = pd.DataFrame(
encoded_cats,
columns=feature_names,
index=X_processed.index
)
X_processed = X_processed.drop(cat_cols, axis=1)
X_processed = pd.concat([X_processed, encoded_df], axis=1)
# Split based on unique drugs to prevent data leakage
unique_drugs = drug_name.unique()
train_drugs, test_drugs = train_test_split(
unique_drugs, test_size=0.8, random_state=split_seed
)
# Create train/test masks based on drug splits
train_mask = drug_name.isin(train_drugs)
test_mask = drug_name.isin(test_drugs)
# Split the data
X_train, X_test = X_processed.loc[train_mask], X_processed.loc[test_mask]
y_train, y_test = y.loc[train_mask], y.loc[test_mask]
# # Verify stratification is reasonable
# print(f"Train set positive rate: {y_train.mean():.4f}")
# print(f"Test set positive rate: {y_test.mean():.4f}")
# print(f"Training set: {X_train.shape}")
# print(f"Testing set: {X_test.shape}")
return X_train, X_test, y_train, y_test
def evaluate_model(model, X_test, y_test):
"""Evaluate model performance and return PR AUC score."""
X_test_const = sm.add_constant(X_test)
y_prob = model.predict(X_test_const)
y_pred = (y_prob > 0.5).astype(int)
# Calculate ROC AUC for model
fpr, tpr, _ = roc_curve(y_test, y_prob)
roc_auc = auc(fpr, tpr)
print(f"\nROC AUC: {roc_auc:.4f}")
# Calculate baseline ROC AUC (random classifier)
no_skill_prob = np.ones(len(y_test)) * np.mean(y_test)
fpr_baseline, tpr_baseline, _ = roc_curve(y_test, no_skill_prob)
roc_auc_baseline = auc(fpr_baseline, tpr_baseline)
print(f"Baseline ROC AUC: {roc_auc_baseline:.4f}")
# Calculate PR AUC for model
precision, recall, _ = precision_recall_curve(y_test, y_prob)
pr_auc = auc(recall, precision)
print(f"PR AUC: {pr_auc:.4f}")
# Calculate baseline PR AUC
no_skill = (y_test.sum()/y_test.shape[0])[0]
precision_baseline = np.ones_like(recall) * no_skill
pr_auc_baseline = auc(recall, precision_baseline)
print(f"Baseline PR AUC: {pr_auc_baseline:.4f}")
# # ROC curve with baseline comparison
# plt.figure(figsize=(5,5))
# plt.plot(fpr, tpr, color='darkorange', lw=2, label=f'Model ROC (AUC = {roc_auc:.2f})')
# plt.plot(fpr_baseline, tpr_baseline, color='green', lw=2, linestyle='--',
# label=f'Baseline ROC (AUC = {roc_auc_baseline:.2f})')
# plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
# plt.xlim([0.0, 1.0])
# plt.ylim([0.0, 1.05])
# plt.xlabel('False Positive Rate')
# plt.ylabel('True Positive Rate')
# plt.title('Receiver Operating Characteristic')
# plt.legend(loc='lower right')
# plt.tight_layout()
# plt.savefig('roc_curve.png')
# Plot Precision-Recall curve with baseline
plt.figure(figsize=(5,5))
plt.plot(recall, precision, color='blue', lw=2,
label=f'Model (AUC = {pr_auc:.2f})')
plt.plot([0, 1], [no_skill, no_skill], linestyle='--', color='red',
label=f'No Skill ({no_skill:.2f})')
plt.xlabel('Recall')
plt.ylabel('Precision')
plt.title('Precision-Recall Curve')
plt.legend()
plt.tight_layout()
plt.savefig('precision_recall_curve.png')
return y_pred, y_prob, pr_auc, pr_auc_baseline
def train_linear_model(X_train, y_train, alpha=0.01):
X_train_const = sm.add_constant(X_train)
final_logit = sm.Logit(y_train, X_train_const)
# Train model with L1 regularization (Lasso) and robust standard errors
final_model = final_logit.fit_regularized(
method='l1',
alpha=alpha,
cov_type='HC3',
trim_mode='auto',
maxiter=10_000
)
# Try L2 regularization (Ridge) if L1 fails to converge
if not hasattr(final_model, 'params'):
print("L1 regularization did not converge, trying L2...")
final_model = final_logit.fit_regularized(
method='l2',
alpha=alpha,
cov_type='HC3',
trim_mode='auto',
maxiter=10_000
)
train_pred_proba = final_model.predict(X_train_const)
train_precision, train_recall, _ = precision_recall_curve(y_train, train_pred_proba)
train_pr_auc = auc(train_recall, train_precision)
print(f"Model training Precision-Recall AUC: {train_pr_auc:.4f}")
fpr, tpr, _ = roc_curve(y_train, train_pred_proba)
train_roc_auc = auc(fpr, tpr)
print(f"Model training ROC AUC: {train_roc_auc:.4f}")
print(f"Regularization: alpha={alpha}")
return final_model
def analyze_coefficients(model, feature_names):
feature_names = ['const'] + feature_names.tolist()
coefficients = model.params
odds_ratios = np.exp(coefficients)
coef_df = pd.DataFrame({
'Feature': feature_names,
'Coefficient': coefficients,
'Odds_Ratio': odds_ratios,
'HC_Std_Error': model.bse,
'z_value': model.tvalues,
'p_value': model.pvalues,
'CI_Lower_95': model.conf_int(alpha=0.05).iloc[:, 0],
'CI_Upper_95': model.conf_int(alpha=0.05).iloc[:, 1]
})
# Sort by absolute coefficient value (excluding constant)
coef_df['Abs_Coefficient'] = np.abs(coef_df['Coefficient'])
coef_df = coef_df.sort_values('Abs_Coefficient', ascending=False).drop('Abs_Coefficient', axis=1)
# Add significance indicator
coef_df['Significant'] = coef_df['p_value'] < 0.05
# Print top significant coefficients (excluding constant)
print("\nTop significant features (p < 0.05):")
sig_features = coef_df[coef_df['Significant'] & (coef_df['Feature'] != 'const')]
if len(sig_features) > 0:
print(sig_features.head(10)[['Feature', 'Coefficient', 'p_value', 'Odds_Ratio', 'CI_Lower_95', 'CI_Upper_95']])
else:
print("No statistically significant features found.")
# Count significant coefficients (excluding constant)
n_significant = sum(coef_df['Significant'] & (coef_df['Feature'] != 'const'))
n_features = sum(coef_df['Feature'] != 'const')
print(f"\nNumber of significant coefficients (p < 0.05): {n_significant} out of {n_features}")
# Plot top coefficients with confidence intervals (excluding constant)
plt.figure(figsize=(5,5))
# Get top 15 features by absolute coefficient value (excluding constant)
top_coefs = coef_df[coef_df['Feature'] != 'const'].head(15)
# Plot coefficients with confidence intervals
colors = ['blue' if sig else 'gray' for sig in top_coefs['Significant']]
for i, (coef, ci_lower, ci_upper, color) in enumerate(zip(
top_coefs['Coefficient'],
top_coefs['CI_Lower_95'],
top_coefs['CI_Upper_95'],
colors)):
plt.errorbar(
x=coef,
y=i,
xerr=[[coef - ci_lower], [ci_upper - coef]],
fmt='o',
capsize=5,
color=color
)
# Add feature names as y-tick labels
plt.yticks(range(len(top_coefs)), top_coefs['Feature'])
plt.axvline(x=0, color='black', linestyle='-', alpha=0.3)
plt.title('Top Logistic Regression Coefficients with 95% CIs')
plt.xlabel('Coefficient Value')
plt.tight_layout()
plt.savefig('top_coefficients.png', dpi=300, bbox_inches='tight')
return coef_df
# def main():
# parser = argparse.ArgumentParser()
# parser.add_argument('--file_path', type=str, help='Path to the input CSV file')
# parser.add_argument('--output_dir', type=str, default='results', help='Directory to save results')
# args = parser.parse_args()
# if not os.path.exists(args.output_dir):
# os.makedirs(args.output_dir)
# df = load_data(args.file_path)
# df = explore_data(df)
# corr_matrix = analyze_feature_correlations(df)
# X_train, X_test, y_train, y_test = prepare_data(df)
# lr_model = train_linear_model(X_train, y_train)
# lr_pred, lr_prob = evaluate_model(lr_model, X_test, y_test)
# coef_df = analyze_coefficients(lr_model, X_train.columns)
# results = {
# 'logistic_regression': lr_model,
# 'lr_coefficients': coef_df,
# }
# return results, df
# if __name__ == "__main__":
# results, df = main() |