
Model Card for CodeT5: Identifier-Aware Unified Pre-trained 
Encoder-Decoder Models for Code Understanding and Generation

The CodeT5 programming language model employs a 
unified encoder-decoder framework to support 
multiple code intelligence downstream applications 
including both understanding and generation tasks. 

On this model card, you can learn more about how 
this model was trained, its capabilities, its intended 
use, and its limitations.

Model Details
Organization     Model date
Salesforce Research     September 2, 2021

Model type     Input
Programming language model     Code, text, or both

Information about parameters
CodeT5-small (60 million), CodeT5-base (220 million)

Output
Code or text. The model supports 4 generation tasks 
(code summarization, code generation, translation, and 
refinement) & 2 understanding tasks (code defect and 
clone detection) in the CodeXGLUE benchmark.

Read the full paper here:  
https://arxiv.org/abs/2109.00859 

Access the public code here: 
https://github.com/salesforce/CodeT5 
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Intended Use

Primary intended use
1. Deployment as an AI-powered coding assistant or 

reviewer to boost the productivity of software 
developers. Use cases include but are not limited to:

a. Code summarization for better software 
understanding and maintenance;

b. Code autocompletion or text-to-code 
generation to accelerate software development;

c. Code defect detection and refinement for 
automatic bug repair.

2. Improvement of other code intelligence applications 
through fine-tuning on another task or other data, 
e.g., fine-tuning CodeT5 to generate API usage 
descriptions.

3. Enhancement in the field of programming language 
processing to push towards a better understanding 
of code, including how to better capture 
code-specific knowledge and balance many code 
intelligence tasks.

Primary intended users
● Software developers
● NLP and software engineering researchers 

Out-of-scope use cases
● CodeT5 should not be used in real-world software 

development processes (such as synthesizing 
programs) without human supervision.

● It should not be used to collect, track, or create 
software to track, sensitive information such as:

○ financial information, such as credit or debit card 
numbers, any related security codes or passwords, 
and bank account numbers;

○ personal information, such as specific people's 
names and other profile data; or

○ sensitive data, such as government-issued 
identification numbers, racial or ethnic origin, 
political opinions, religious or philosophical 
beliefs, and health information. 

● This software should not be used to promote or 
profit from: 
○ violence, hate, and division;
○ environmental destruction; 
○ abuse of human rights; or
○ the destruction of people's physical and mental 

health.

Training Data

The model is trained on 8.35 million code snippets: 3.16 
million bimodal instances (a function and its natural 
language comment in English) and 5.19 million 
unimodal (function-only) instances. The training data 
contains 6 programming languages (Python, Java, 
JavaScript, PHP, Ruby, Go) from CodeSearchNet data 
and 2 additional programming languages (C and C#) 
from Google BigQuery data. See the paper for details.

Metrics

We follow the CodeXGLUE benchmark (described here) 
to measure different downstream tasks. We employ 
smoothed BLEU-4 for code summarization (19.77), 
exact match (EM) accuracy, BLEU-4, and CodeBLEU for 
code generation (22.7, 41.48, 44.10 respectively), exact 
match accuracy and BLEU-4 for code translation (65.90 
EM, 84.03 BLEU for Java to C#) and code refinement 
(14.18 EM, 88.90 BLEU), accuracy for code defect 
detection (65.78) and F1 score for code clone detection 
(97.2). Please see the paper for more details.

Ethical Considerations

● Dataset bias. The training datasets in our study are 
source code including user-written comments from 
open-source and publicly-available Github 
repositories that do not tie to any specific 
application. However, the datasets possibly encode 
some stereotypes like race and gender from the text 
comments or the source code including its variables, 
functions, and class names. As such, social biases 
would be intrinsically embedded into the models 
trained on them. 

https://github.com/microsoft/CodeXGLUE
https://arxiv.org/abs/2109.00859
https://github.com/salesforce/CodeT5
https://github.com/salesforce/CodeT5/blob/main/LICENSE.txt
mailto:codeT5@salesforce.com
https://github.com/github/CodeSearchNet
https://console.cloud.google.com/marketplace/details/github/github-repos
https://arxiv.org/pdf/2109.00859.pdf
https://arxiv.org/abs/2102.04664


● Computational cost. Our model pre-training requires 
non-trivial computational resources, though we have 
tried our best to carefully design our experiments and 
improve experiments to save unnecessary 
computation costs. In addition, we experimented on 
Google Cloud Platform which purchases carbon 
credits to reduce its carbon footprint -- training 
CodeT5-base produced around 49.25 kg CO₂ which 
was totally offset by the provider. Furthermore, we 
release our pre-trained models publicly to avoid 
repeated training for the code intelligence research 
community. 

● Automation bias. As CodeT5 can be deployed to 
provide assistance like code generation to aid 
developers, automation bias of machine learning 
systems should be carefully considered, especially for 
developers who tend to over-rely on the 
model-generated outputs. These systems might 
produce functions that superficially appear correct 
but do not align with the developer’s intents. If 
developers unintentionally adopt these incorrect 
code suggestions, it might require longer debugging 
time and even lead to some significant safety issues. 

● Security implications. We trained CodeT5 on existing 
code corpus originally collected from public Github 
repositories. Pre-trained models might encode some 
sensitive information (e.g., personal identification 
numbers) from the training data. Though we have 
conducted multi-rounds of data cleaning to mitigate 
this before training our models, it is still possible that 
some sensitive information was not or cannot be 
completely removed. Besides, due to the 
non-deterministic nature of generation models like 
CodeT5, the model might produce some vulnerable 
code to harmfully affect the software and even be 
able to benefit more advanced malware development 
when deliberately misused.

Caveats and Recommendations

● We recommend that practitioners using CodeT5 in 
real-world scenarios bear in mind that its generation 
outputs should be only taken as references and that 
domain experts be engaged for further correctness- 
and security-checking. 

● We also recommend that the data be further 
screened to fine-tune CodeT5, including sensitive 
data cleaning and bias mitigation.

● The model is trained on a limited number of 
programming languages: primarily Python, Java, 
JavaScript, PHP, Ruby, Go, C, and C#. A proposed 
future area of research would be to train the model 
on more languages. 


