Dionyssos's picture
oscillate vits duration
c7362aa
import torch
import torch.nn.functional as F
import torch.nn as nn
from torch.nn import Conv1d, ConvTranspose1d
from torch.nn.utils.parametrizations import weight_norm
import math
import numpy as np
def get_padding(kernel_size, dilation=1):
return int((kernel_size*dilation - dilation)/2)
def _tile(x,
length=None):
x = x.repeat(1, 1, int(length / x.shape[2]) + 1)[:, :, :length]
return x
class AdaIN1d(nn.Module):
# used by HiFiGan & ProsodyPredictor
def __init__(self, style_dim, num_features):
super().__init__()
self.norm = nn.InstanceNorm1d(num_features, affine=False)
self.fc = nn.Linear(style_dim, num_features*2)
def forward(self, x, s):
# x = torch.Size([1, 512, 248]) same as output
# s = torch.Size([1, 7, 1, 128])
s = self.fc(s.transpose(1, 2)).transpose(1, 2)
s = _tile(s, length=x.shape[2])
gamma, beta = torch.chunk(s, chunks=2, dim=1)
return (1+gamma) * self.norm(x) + beta
class AdaINResBlock1(torch.nn.Module):
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5), style_dim=64):
super(AdaINResBlock1, self).__init__()
self.convs1 = nn.ModuleList([
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
padding=get_padding(kernel_size, dilation[0]))),
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
padding=get_padding(kernel_size, dilation[1]))),
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
padding=get_padding(kernel_size, dilation[2])))
])
# self.convs1.apply(init_weights)
self.convs2 = nn.ModuleList([
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
padding=get_padding(kernel_size, 1))),
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
padding=get_padding(kernel_size, 1))),
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
padding=get_padding(kernel_size, 1)))
])
# self.convs2.apply(init_weights)
self.adain1 = nn.ModuleList([
AdaIN1d(style_dim, channels),
AdaIN1d(style_dim, channels),
AdaIN1d(style_dim, channels),
])
self.adain2 = nn.ModuleList([
AdaIN1d(style_dim, channels),
AdaIN1d(style_dim, channels),
AdaIN1d(style_dim, channels),
])
self.alpha1 = nn.ParameterList(
[nn.Parameter(torch.ones(1, channels, 1)) for i in range(len(self.convs1))])
self.alpha2 = nn.ParameterList(
[nn.Parameter(torch.ones(1, channels, 1)) for i in range(len(self.convs2))])
def forward(self, x, s):
for c1, c2, n1, n2, a1, a2 in zip(self.convs1, self.convs2, self.adain1, self.adain2, self.alpha1, self.alpha2):
xt = n1(x, s) # THIS IS ADAIN - EXPECTS conv1d dims
xt = xt + (1 / a1) * (torch.sin(a1 * xt) ** 2) # Snake1D
xt = c1(xt)
xt = n2(xt, s) # THIS IS ADAIN - EXPECTS conv1d dims
xt = xt + (1 / a2) * (torch.sin(a2 * xt) ** 2) # Snake1D
xt = c2(xt)
x = xt + x
return x
class SourceModuleHnNSF(torch.nn.Module):
def __init__(self):
super().__init__()
self.harmonic_num = 8
self.l_linear = torch.nn.Linear(self.harmonic_num + 1, 1)
self.upsample_scale = 300
def forward(self, x):
# --
x = torch.multiply(x, torch.FloatTensor(
[[range(1, self.harmonic_num + 2)]]).to(x.device)) # [1, 145200, 9]
# modulo of negative f0_values => -21 % 10 = 9 as -3*10 + 9 = 21 NOTICE THAT f0_values IS SIGNED
rad_values = x / 25647 #).clamp(0, 1)
# rad_values = torch.where(torch.logical_or(rad_values < 0, rad_values > 1), 0.5, rad_values)
rad_values = rad_values % 1 # % of neg values
rad_values = F.interpolate(rad_values.transpose(1, 2),
scale_factor=1/self.upsample_scale,
mode='linear').transpose(1, 2)
# 1.89 sounds also nice has woofer at punctuation
phase = torch.cumsum(rad_values, dim=1) * 1.84 * np.pi
phase = F.interpolate(phase.transpose(1, 2) * self.upsample_scale,
scale_factor=self.upsample_scale, mode='linear').transpose(1, 2)
x = .009 * phase.sin()
# --
x = self.l_linear(x).tanh()
return x
class Generator(torch.nn.Module):
def __init__(self,
style_dim,
resblock_kernel_sizes,
upsample_rates,
upsample_initial_channel,
resblock_dilation_sizes,
upsample_kernel_sizes):
super(Generator, self).__init__()
self.num_kernels = len(resblock_kernel_sizes)
self.num_upsamples = len(upsample_rates)
self.m_source = SourceModuleHnNSF()
self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates))
self.noise_convs = nn.ModuleList()
self.ups = nn.ModuleList()
self.noise_res = nn.ModuleList()
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
c_cur = upsample_initial_channel // (2 ** (i + 1))
self.ups.append(weight_norm(ConvTranspose1d(upsample_initial_channel//(2**i),
upsample_initial_channel//(
2**(i+1)),
k, u, padding=(u//2 + u % 2), output_padding=u % 2)))
if i + 1 < len(upsample_rates):
stride_f0 = np.prod(upsample_rates[i + 1:])
self.noise_convs.append(Conv1d(
1, c_cur, kernel_size=stride_f0 * 2, stride=stride_f0, padding=(stride_f0+1) // 2))
self.noise_res.append(AdaINResBlock1(
c_cur, 7, [1, 3, 5], style_dim))
else:
self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1))
self.noise_res.append(AdaINResBlock1(
c_cur, 11, [1, 3, 5], style_dim))
self.resblocks = nn.ModuleList()
self.alphas = nn.ParameterList()
self.alphas.append(nn.Parameter(
torch.ones(1, upsample_initial_channel, 1)))
for i in range(len(self.ups)):
ch = upsample_initial_channel//(2**(i+1))
self.alphas.append(nn.Parameter(torch.ones(1, ch, 1)))
for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
self.resblocks.append(AdaINResBlock1(ch, k, d, style_dim))
self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3))
def forward(self, x, s, f0):
# x.shape=torch.Size([1, 512, 484]) s.shape=torch.Size([1, 1, 1, 128]) f0.shape=torch.Size([1, 484]) GENERAT 249
f0 = self.f0_upsamp(f0).transpose(1, 2)
# x.shape=torch.Size([1, 512, 484]) s.shape=torch.Size([1, 1, 1, 128]) f0.shape=torch.Size([1, 145200, 1]) GENERAT 253
# [1, 145400, 1] f0 enters already upsampled to full wav 24kHz length
har_source = self.m_source(f0)
har_source = har_source.transpose(1, 2)
for i in range(self.num_upsamples):
x = x + (1 / self.alphas[i]) * (torch.sin(self.alphas[i] * x) ** 2)
x_source = self.noise_convs[i](har_source)
x_source = self.noise_res[i](x_source, s)
x = self.ups[i](x)
x = x + x_source
xs = None
for j in range(self.num_kernels):
if xs is None:
xs = self.resblocks[i*self.num_kernels+j](x, s)
else:
xs += self.resblocks[i*self.num_kernels+j](x, s)
x = xs / self.num_kernels
# x = x + (1 / self.alphas[i+1]) * (torch.sin(self.alphas[i+1] * x) ** 2) # noisy
x = self.conv_post(x)
x = torch.tanh(x)
return x
class AdainResBlk1d(nn.Module):
# also used in ProsodyPredictor()
def __init__(self, dim_in, dim_out, style_dim=64, actv=nn.LeakyReLU(0.2),
upsample='none', dropout_p=0.0):
super().__init__()
self.actv = actv
self.upsample_type = upsample
self.upsample = UpSample1d(upsample)
self.learned_sc = dim_in != dim_out
self._build_weights(dim_in, dim_out, style_dim)
if upsample == 'none':
self.pool = nn.Identity()
else:
self.pool = weight_norm(nn.ConvTranspose1d(
dim_in, dim_in, kernel_size=3, stride=2, groups=dim_in, padding=1, output_padding=1))
def _build_weights(self, dim_in, dim_out, style_dim):
self.conv1 = weight_norm(nn.Conv1d(dim_in, dim_out, 3, 1, 1))
self.conv2 = weight_norm(nn.Conv1d(dim_out, dim_out, 3, 1, 1))
self.norm1 = AdaIN1d(style_dim, dim_in)
self.norm2 = AdaIN1d(style_dim, dim_out)
if self.learned_sc:
self.conv1x1 = weight_norm(
nn.Conv1d(dim_in, dim_out, 1, 1, 0, bias=False))
def _shortcut(self, x):
x = self.upsample(x)
if self.learned_sc:
x = self.conv1x1(x)
return x
def _residual(self, x, s):
x = self.norm1(x, s)
x = self.actv(x)
x = self.pool(x)
x = self.conv1(x)
x = self.norm2(x, s)
x = self.actv(x)
x = self.conv2(x)
return x
def forward(self, x, s):
out = self._residual(x, s)
out = (out + self._shortcut(x)) / math.sqrt(2)
return out
class UpSample1d(nn.Module):
def __init__(self, layer_type):
super().__init__()
self.layer_type = layer_type
def forward(self, x):
if self.layer_type == 'none':
return x
else:
return F.interpolate(x, scale_factor=2, mode='nearest-exact')
class Decoder(nn.Module):
def __init__(self, dim_in=512, F0_channel=512, style_dim=64, dim_out=80,
resblock_kernel_sizes=[3, 7, 11],
upsample_rates=[10, 5, 3, 2],
upsample_initial_channel=512,
resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5], [1, 3, 5]],
upsample_kernel_sizes=[20, 10, 6, 4]):
super().__init__()
self.decode = nn.ModuleList()
self.encode = AdainResBlk1d(dim_in + 2, 1024, style_dim)
self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim))
self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim))
self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim))
self.decode.append(AdainResBlk1d(
1024 + 2 + 64, 512, style_dim, upsample=True))
self.F0_conv = weight_norm(
nn.Conv1d(1, 1, kernel_size=3, stride=2, groups=1, padding=1)) # smooth
self.N_conv = weight_norm(
nn.Conv1d(1, 1, kernel_size=3, stride=2, groups=1, padding=1))
self.asr_res = nn.Sequential(
weight_norm(nn.Conv1d(512, 64, kernel_size=1)),
)
self.generator = Generator(style_dim, resblock_kernel_sizes, upsample_rates,
upsample_initial_channel, resblock_dilation_sizes, upsample_kernel_sizes)
def forward(self, asr=None, F0_curve=None, N=None, s=None):
F0 = self.F0_conv(F0_curve)
N = self.N_conv(N)
x = torch.cat([asr, F0, N], axis=1)
x = self.encode(x, s)
asr_res = self.asr_res(asr)
res = True
for block in self.decode:
if res:
x = torch.cat([x, asr_res, F0, N], axis=1)
x = block(x, s)
if block.upsample_type != "none":
res = False
x = self.generator(x, s, F0_curve)
return x