File size: 22,783 Bytes
2795186 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 |
"""
Plot statistical distributions from the transaction graph.
"""
import os
import sys
import csv
import json
from collections import Counter, defaultdict
import networkx as nx
import powerlaw
from datetime import datetime, timedelta
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import warnings
category = matplotlib.cbook.MatplotlibDeprecationWarning
warnings.filterwarnings('ignore', category=category)
warnings.filterwarnings('ignore', category=UserWarning)
warnings.filterwarnings('ignore', category=RuntimeWarning)
def get_date_list(_g):
all_dates = list(nx.get_edge_attributes(_g, "date").values())
start_date = min(all_dates)
end_date = max(all_dates)
days = (end_date - start_date).days + 1
date_list = [start_date + timedelta(days=n) for n in range(days)]
return date_list
def construct_graph(_acct_csv, _tx_csv, _schema):
"""Load transaction CSV file and construct Graph
:param _acct_csv: Account CSV file (e.g. output/accounts.csv)
:param _tx_csv: Transaction CSV file (e.g. output/transactions.csv)
:param _schema: Dict for schema from JSON file
:return: Transaction Graph
:rtype: nx.MultiDiGraph
"""
_g = nx.MultiDiGraph()
id_idx = None
bank_idx = None
sar_idx = None
acct_schema = _schema["account"]
for i, col in enumerate(acct_schema):
data_type = col.get("dataType")
if data_type == "account_id":
id_idx = i
elif data_type == "bank_id":
bank_idx = i
elif data_type == "sar_flag":
sar_idx = i
orig_idx = None
bene_idx = None
type_idx = None
amt_idx = None
date_idx = None
with open(_acct_csv, "r") as _rf:
reader = csv.reader(_rf)
next(reader) # Skip header
for row in reader:
acct_id = row[id_idx]
bank_id = row[bank_idx]
is_sar = row[sar_idx].lower() == "true"
_g.add_node(acct_id, bank_id=bank_id, is_sar=is_sar)
tx_schema = _schema["transaction"]
for i, col in enumerate(tx_schema):
data_type = col.get("dataType")
if data_type == "orig_id":
orig_idx = i
elif data_type == "dest_id":
bene_idx = i
elif data_type == "transaction_type":
type_idx = i
elif data_type == "amount":
amt_idx = i
elif data_type == "timestamp":
date_idx = i
elif data_type == "sar_flag":
sar_idx = i
with open(_tx_csv, "r") as _rf:
reader = csv.reader(_rf)
next(reader) # Skip header
for row in reader:
orig = row[orig_idx]
bene = row[bene_idx]
tx_type = row[type_idx]
amount = float(row[amt_idx])
date_str = row[date_idx].split("T")[0]
date = datetime.strptime(date_str, "%Y-%m-%d")
is_sar = row[sar_idx].lower() == "true"
_g.add_edge(orig, bene, amount=amount, date=date, type=tx_type, is_sar=is_sar)
return _g
def plot_degree_distribution(_g, _conf, _plot_img):
"""Plot degree distribution for accounts (vertices)
:param _g: Transaction graph
:param _conf: Configuration object
:param _plot_img: Degree distribution image (log-log plot)
:return:
"""
# Load parameter files
_input_conf = _conf["input"]
_input_dir = _input_conf["directory"]
_input_acct = _input_conf["accounts"]
_input_deg = _input_conf["degree"]
input_acct_path = os.path.join(_input_dir, _input_acct)
input_deg_path = os.path.join(_input_dir, _input_deg)
if not os.path.isfile(input_acct_path):
print("Account parameter file %s is not found." % input_acct_path)
return
total_num_accts = 0
with open(input_acct_path, "r") as _rf:
reader = csv.reader(_rf)
header = next(reader)
count_idx = None
for i, col in enumerate(header):
if col == "count":
count_idx = i
break
for row in reader:
total_num_accts += int(row[count_idx])
if not os.path.isfile(input_deg_path):
print("Degree parameter file %s is not found." % input_deg_path)
return
deg_num_accts = 0
in_degrees = list()
in_deg_seq = list()
in_deg_hist = list()
out_degrees = list()
out_deg_seq = list()
out_deg_hist = list()
with open(input_deg_path, "r") as _rf:
reader = csv.reader(_rf)
next(reader)
for row in reader:
deg = int(row[0])
in_num = int(row[1])
out_num = int(row[2])
if in_num > 0:
in_degrees.extend([deg] * in_num)
in_deg_seq.append(deg)
in_deg_hist.append(in_num)
deg_num_accts += in_num
if out_num > 0:
out_degrees.extend([deg] * out_num)
out_deg_seq.append(deg)
out_deg_hist.append(out_num)
multiplier = total_num_accts // deg_num_accts
# print(total_num_accts, deg_num_accts, multiplier)
in_degrees = [d * multiplier for d in in_degrees]
in_deg_hist = [d * multiplier for d in in_deg_hist]
out_degrees = [d * multiplier for d in out_degrees]
out_deg_hist = [d * multiplier for d in out_deg_hist]
# ax1, ax2: Expected in/out-degree distributions from parameter files
# ax3, ax4: Output in/out-degree distributions from the output transaction list
plt.clf()
fig, axs = plt.subplots(2, 2, figsize=(16, 12))
ax1, ax2, ax3, ax4 = axs[0, 0], axs[0, 1], axs[1, 0], axs[1, 1]
pw_result = powerlaw.Fit(in_degrees, verbose=False)
alpha = pw_result.power_law.alpha
alpha_text = "alpha = %.2f" % alpha
ax1.loglog(in_deg_seq, in_deg_hist, "bo-")
ax1.set_title("Expected in-degree distribution")
plt.text(0.75, 0.9, alpha_text, transform=ax1.transAxes)
ax1.set_xlabel("In-degree")
ax1.set_ylabel("Number of account vertices")
pw_result = powerlaw.Fit(out_degrees, verbose=False)
alpha = pw_result.power_law.alpha
alpha_text = "alpha = %.2f" % alpha
ax2.loglog(out_deg_seq, out_deg_hist, "ro-")
ax2.set_title("Expected out-degree distribution")
plt.text(0.75, 0.9, alpha_text, transform=ax2.transAxes)
ax2.set_xlabel("Out-degree")
ax2.set_ylabel("Number of account vertices")
# Get degree from the output transaction list
in_degrees = [len(_g.pred[n].keys()) for n in _g.nodes()] # list(_g.in_degree().values())
in_deg_seq = sorted(set(in_degrees))
in_deg_hist = [in_degrees.count(x) for x in in_deg_seq]
pw_result = powerlaw.Fit(in_degrees, verbose=False)
alpha = pw_result.power_law.alpha
alpha_text = "alpha = %.2f" % alpha
ax3.loglog(in_deg_seq, in_deg_hist, "bo-")
ax3.set_title("Output in-degree distribution")
plt.text(0.75, 0.9, alpha_text, transform=ax3.transAxes)
ax3.set_xlabel("In-degree")
ax3.set_ylabel("Number of account vertices")
out_degrees = [len(_g.succ[n].keys()) for n in _g.nodes()] # list(_g.out_degree().values())
# print("max out-degree", max(out_degrees))
out_deg_seq = sorted(set(out_degrees))
out_deg_hist = [out_degrees.count(x) for x in out_deg_seq]
pw_result = powerlaw.Fit(out_degrees, verbose=False)
alpha = pw_result.power_law.alpha
alpha_text = "alpha = %.2f" % alpha
ax4.loglog(out_deg_seq, out_deg_hist, "ro-")
ax4.set_title("Output out-degree distribution")
plt.text(0.75, 0.9, alpha_text, transform=ax4.transAxes)
ax4.set_xlabel("Out-degree")
ax4.set_ylabel("Number of account vertices")
plt.savefig(_plot_img)
def plot_wcc_distribution(_g, _plot_img):
"""Plot weakly connected components size distributions
:param _g: Transaction graph
:param _plot_img: WCC size distribution image (log-log plot)
:return:
"""
all_wcc = nx.weakly_connected_components(_g)
wcc_sizes = Counter([len(wcc) for wcc in all_wcc])
size_seq = sorted(wcc_sizes.keys())
size_hist = [wcc_sizes[x] for x in size_seq]
plt.figure(figsize=(16, 12))
plt.clf()
plt.loglog(size_seq, size_hist, 'ro-')
plt.title("WCC Size Distribution")
plt.xlabel("Size")
plt.ylabel("Number of WCCs")
plt.savefig(_plot_img)
def plot_alert_stat(_alert_acct_csv, _alert_tx_csv, _schema, _plot_img):
alert_member_count = Counter()
alert_tx_count = Counter()
alert_init_amount = dict() # Initial amount
alert_amount_list = defaultdict(list) # All amount list
alert_dates = defaultdict(list)
alert_sar_flag = defaultdict(bool)
alert_types = dict()
label_alerts = defaultdict(list) # label -> alert IDs
alert_idx = None
amt_idx = None
date_idx = None
type_idx = None
# bank_idx = None
sar_idx = None
acct_schema = _schema["alert_member"]
for i, col in enumerate(acct_schema):
data_type = col.get("dataType")
if data_type == "alert_id":
alert_idx = i
elif data_type == "alert_type":
type_idx = i
# elif data_type == "model_id":
# bank_idx = i
elif data_type == "sar_flag":
sar_idx = i
with open(_alert_acct_csv, "r") as _rf:
reader = csv.reader(_rf)
next(reader)
for row in reader:
alert_id = row[alert_idx]
alert_type = row[type_idx]
# bank_id = row[bank_idx]
is_sar = row[sar_idx].lower() == "true"
alert_member_count[alert_id] += 1
alert_sar_flag[alert_id] = is_sar
alert_types[alert_id] = alert_type
label = ("SAR" if is_sar else "Normal") + ":" + alert_type
label_alerts[label].append(alert_id)
tx_schema = _schema["alert_tx"]
for i, col in enumerate(tx_schema):
data_type = col.get("dataType")
if data_type == "alert_id":
alert_idx = i
elif data_type == "amount":
amt_idx = i
elif data_type == "timestamp":
date_idx = i
with open(_alert_tx_csv, "r") as _rf:
reader = csv.reader(_rf)
next(reader)
for row in reader:
alert_id = row[alert_idx]
amount = float(row[amt_idx])
date_str = row[date_idx].split("T")[0]
date = datetime.strptime(date_str, "%Y-%m-%d")
alert_tx_count[alert_id] += 1
if alert_id not in alert_init_amount:
alert_init_amount[alert_id] = amount
alert_amount_list[alert_id].append(amount)
alert_dates[alert_id].append(date)
# Scatter plot for all alerts
# ax1: Number of member accounts and transaction amount range
# ax2: Number of transactions and transaction period
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(8, 12))
cmap = plt.get_cmap("tab10")
for i, (label, alerts) in enumerate(label_alerts.items()):
color = cmap(i)
x = [alert_member_count[a] for a in alerts]
y_init = np.array([alert_init_amount[a] for a in alerts])
# y_med = np.array([np.median(alert_amount_list[a]) for a in alerts])
# y_min = np.array([min(alert_amount_list[a]) for a in alerts])
# y_max = np.array([max(alert_amount_list[a]) for a in alerts])
# y_err = [y_med - y_min, y_max - y_med]
ax1.scatter(x, y_init, s=50, color=color, label=label, edgecolors="none")
for j, alert_id in enumerate(alerts):
ax1.annotate(alert_id, (x[j], y_init[j]))
# ax1.scatter(x, y_med, s=50, color=color, label=label, edgecolors="none")
# ax1.errorbar(x, y_med, yerr=y_err, ecolor=color, ls="none")
# for j, alert_id in enumerate(alerts):
# ax1.annotate(alert_id, (x[j], y_med[j]))
x = [alert_tx_count[a] for a in alerts]
y_period = [(max(alert_dates[a]) - min(alert_dates[a])).days + 1
for a in alerts]
ax2.scatter(x, y_period, s=100, color=color, label=label, edgecolors="none")
for j, alert_id in enumerate(alerts):
ax2.annotate(alert_id, (x[j], y_period[j]))
ax1.set_xlabel("Number of accounts per alert")
ax1.set_ylabel("Initial transaction amount")
# ax1.set_ylabel("Min/Median/Max transaction amount")
ax1.legend()
ax2.set_xlabel("Number of transactions per alert")
ax2.set_ylabel("Transaction period")
ax2.legend()
plt.savefig(_plot_img)
def plot_aml_rule(aml_csv, _plot_img):
"""Plot the number of AML typologies
:param aml_csv: AML typology pattern parameter CSV file
:param _plot_img: Output image file (bar plot)
"""
aml_types = Counter()
num_idx = None
type_idx = None
if not os.path.isfile(aml_csv):
print("AML typology file %s is not found." % aml_csv)
return
with open(aml_csv, "r") as _rf:
reader = csv.reader(_rf)
header = next(reader)
for i, k in enumerate(header):
if k == "count":
num_idx = i
elif k == "type":
type_idx = i
for row in reader:
if "#" in row[0]:
continue
num = int(row[num_idx])
aml_type = row[type_idx]
aml_types[aml_type] += num
x = list()
y = list()
for aml_type, num in aml_types.items():
x.append(aml_type)
y.append(num)
plt.figure(figsize=(16, 12))
plt.clf()
plt.bar(range(len(x)), y, tick_label=x)
plt.title("AML typologies")
plt.xlabel("Typology name")
plt.ylabel("Number of patterns")
plt.savefig(_plot_img)
def plot_tx_count(_g, _plot_img):
"""Plot the number of normal and SAR transactions
:param _g: Transaction graph
:param _plot_img: Output image file path
"""
date_list = get_date_list(_g)
normal_tx_count = Counter()
sar_tx_count = Counter()
for _, _, attr in _g.edges(data=True):
is_sar = attr["is_sar"]
date = attr["date"]
if is_sar:
sar_tx_count[date] += 1
else:
normal_tx_count[date] += 1
normal_tx_list = [normal_tx_count[d] for d in date_list]
sar_tx_list = [sar_tx_count[d] for d in date_list]
plt.figure(figsize=(16, 12))
plt.clf()
p_n = plt.plot(date_list, normal_tx_list, "b")
p_f = plt.plot(date_list, sar_tx_list, "r")
plt.yscale('log')
plt.legend((p_n[0], p_f[0]), ("Normal", "SAR"))
plt.title("Number of transactions per step")
plt.xlabel("Simulation step")
plt.ylabel("Number of transactions")
plt.savefig(_plot_img)
def plot_clustering_coefficient(_g, _plot_img, interval=30):
"""Plot the clustering coefficient transition
:param _g: Transaction graph
:param _plot_img: Output image file
:param interval: Simulation step interval for plotting
(it takes too much time to compute clustering coefficient)
:return:
"""
date_list = get_date_list(_g)
gg = nx.Graph()
edges = defaultdict(list)
for k, v in nx.get_edge_attributes(_g, "date").items():
e = (k[0], k[1])
edges[v].append(e)
sample_dates = list()
values = list()
for i, t in enumerate(date_list):
gg.add_edges_from(edges[t])
if i % interval == 0:
v = nx.average_clustering(gg) if gg.number_of_nodes() else 0.0
sample_dates.append(t)
values.append(v)
print("Clustering coefficient at %s: %f" % (str(t), v))
plt.figure(figsize=(16, 12))
plt.clf()
plt.plot(sample_dates, values, 'bo-')
plt.title("Clustering Coefficient Transition")
plt.xlabel("date")
plt.ylabel("Clustering Coefficient")
plt.savefig(_plot_img)
def plot_diameter(dia_csv, _plot_img):
"""Plot the diameter and the average of largest distance transitions
:param dia_csv: Diameter transition CSV file
:param _plot_img: Output image file
:return:
"""
x = list()
dia = list()
aver = list()
with open(dia_csv, "r") as _rf:
reader = csv.reader(_rf)
next(reader)
for row in reader:
step = int(row[0])
d = float(row[1])
a = float(row[2])
x.append(step)
dia.append(d)
aver.append(a)
plt.figure(figsize=(16, 12))
plt.clf()
plt.ylim(0, max(dia) + 1)
p_d = plt.plot(x, dia, "r")
p_a = plt.plot(x, aver, "b")
plt.legend((p_d[0], p_a[0]), ("Diameter", "Average"))
plt.title("Diameter and Average Distance")
plt.xlabel("Simulation step")
plt.ylabel("Distance")
plt.savefig(_plot_img)
def plot_bank2bank_count(_g: nx.MultiDiGraph, _plot_img: str):
acct_bank = nx.get_node_attributes(_g, "bank_id")
bank_list = sorted(set(acct_bank.values()))
bank2bank_all = Counter()
bank2bank_sar = Counter()
for orig, bene, attr in _g.edges(data=True):
orig_bank = acct_bank[orig]
bene_bank = acct_bank[bene]
is_sar = attr["is_sar"]
bank_pair = (orig_bank, bene_bank)
bank2bank_all[bank_pair] += 1
if is_sar:
bank2bank_sar[bank_pair] += 1
total_num = _g.number_of_edges()
internal_num = sum([num for pair, num in bank2bank_all.items() if pair[0] == pair[1]])
external_num = total_num - internal_num
internal_ratio = internal_num / total_num * 100
external_ratio = external_num / total_num * 100
internal_sar_num = sum([num for pair, num in bank2bank_sar.items() if pair[0] == pair[1]])
external_sar_num = sum([num for pair, num in bank2bank_sar.items() if pair[0] != pair[1]])
all_count_data = list()
sar_count_data = list()
for orig_bank in bank_list:
all_count_row = [bank2bank_all[(orig_bank, bene_bank)] for bene_bank in bank_list]
all_count_total = sum(all_count_row)
all_count_data.append(all_count_row + [all_count_total])
sar_count_row = [bank2bank_sar[(orig_bank, bene_bank)] for bene_bank in bank_list]
sar_count_total = sum(sar_count_row)
sar_count_data.append(sar_count_row + [sar_count_total])
all_count_total = list()
sar_count_total = list()
for bene_bank in bank_list:
all_count_total.append(sum([bank2bank_all[(orig_bank, bene_bank)] for orig_bank in bank_list]))
sar_count_total.append(sum([bank2bank_sar[(orig_bank, bene_bank)] for orig_bank in bank_list]))
all_count_total.append(sum(all_count_total))
sar_count_total.append(sum(sar_count_total))
all_count_data.append(all_count_total)
sar_count_data.append(sar_count_total)
all_count_csv = list()
sar_count_csv = list()
for row in all_count_data:
all_count_csv.append(["{:,}".format(num) for num in row])
for row in sar_count_data:
sar_count_csv.append(["{:,}".format(num) for num in row])
cols = ["To: %s" % bank for bank in bank_list] + ["Total"]
rows = ["From: %s" % bank for bank in bank_list] + ["Total"]
fig, (ax1, ax2) = plt.subplots(nrows=2, figsize=(9, 6))
table_attr = {"rowLabels": rows, "colLabels": cols, "colWidths": [0.15 for _ in cols],
"loc": "center", "bbox": [0.15, 0.3, 0.75, 0.6]}
ax1.axis("off")
ax1.table(cellText=all_count_csv, **table_attr)
ax1.set_title("Number of all bank-to-bank transactions")
ax2.axis("off")
ax2.table(cellText=sar_count_csv, **table_attr)
ax2.set_title("Number of SAR bank-to-bank transactions")
fig.suptitle("Internal bank transactions: Total = {:,} ({:.2f}%), SAR = {:,}".
format(internal_num, internal_ratio, internal_sar_num) + "\n" +
"External bank transactions: Total = {:,} ({:.2f}%), SAR = {:,}"
.format(external_num, external_ratio, external_sar_num),
y=0.1)
plt.tight_layout()
fig.savefig(_plot_img)
if __name__ == "__main__":
argv = sys.argv
if len(argv) < 2:
print("Usage: python3 %s [ConfJSON]" % argv[0])
exit(1)
conf_json = argv[1]
with open(conf_json, "r") as rf:
conf = json.load(rf)
input_dir = conf["input"]["directory"]
schema_json = conf["input"]["schema"]
schema_path = os.path.join(input_dir, schema_json)
with open(schema_path, "r") as rf:
schema = json.load(rf)
sim_name = argv[2] if len(argv) >= 3 else conf["general"]["simulation_name"]
work_dir = os.path.join(conf["output"]["directory"], sim_name)
acct_csv = conf["output"]["accounts"]
tx_csv = conf["output"]["transactions"]
acct_path = os.path.join(work_dir, acct_csv)
tx_path = os.path.join(work_dir, tx_csv)
tmp_dir = conf["temporal"]["directory"]
output_dir = conf["output"]["directory"]
if not os.path.exists(tx_path):
print("Transaction list CSV file %s not found." % tx_path)
exit(1)
print("Constructing transaction graph")
g = construct_graph(acct_path, tx_path, schema)
v_conf = conf["visualizer"]
deg_plot = v_conf["degree"]
wcc_plot = v_conf["wcc"]
alert_plot = v_conf["alert"]
count_plot = v_conf["count"]
cc_plot = v_conf["clustering"]
dia_plot = v_conf["diameter"]
b2b_plot = "bank2bank.png"
print("Plot degree distributions")
plot_degree_distribution(g, conf, os.path.join(work_dir, deg_plot))
print("Plot weakly connected component size distribution")
plot_wcc_distribution(g, os.path.join(work_dir, wcc_plot))
param_dir = conf["input"]["directory"]
alert_param_file = conf["input"]["alert_patterns"]
param_path = os.path.join(param_dir, alert_param_file)
plot_path = os.path.join(work_dir, alert_plot)
print("Plot AML typology count")
plot_aml_rule(param_path, plot_path)
alert_acct_csv = conf["output"]["alert_members"]
alert_tx_csv = conf["output"]["alert_transactions"]
alert_acct_path = os.path.join(work_dir, alert_acct_csv)
alert_tx_path = os.path.join(work_dir, alert_tx_csv)
print("Plot alert attribute distributions")
plot_alert_stat(alert_acct_path, alert_tx_path, schema, os.path.join(work_dir, "alert_dist.png"))
print("Plot transaction count per date")
plot_tx_count(g, os.path.join(work_dir, count_plot))
print("Plot clustering coefficient of the transaction graph")
plot_clustering_coefficient(g, os.path.join(work_dir, cc_plot))
dia_log = conf["output"]["diameter_log"]
dia_path = os.path.join(work_dir, dia_log)
if os.path.exists(dia_path):
plot_img = os.path.join(work_dir, dia_plot)
print("Plot diameter of the transaction graph")
plot_diameter(dia_path, plot_img)
else:
print("Diameter log file %s not found." % dia_path)
print("Plot bank-to-bank transaction counts")
plot_bank2bank_count(g, os.path.join(work_dir, b2b_plot))
|