File size: 22,783 Bytes
2795186
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
"""
Plot statistical distributions from the transaction graph.
"""

import os
import sys
import csv
import json
from collections import Counter, defaultdict
import networkx as nx
import powerlaw
from datetime import datetime, timedelta
import numpy as np

import matplotlib
import matplotlib.pyplot as plt
import warnings

category = matplotlib.cbook.MatplotlibDeprecationWarning
warnings.filterwarnings('ignore', category=category)
warnings.filterwarnings('ignore', category=UserWarning)
warnings.filterwarnings('ignore', category=RuntimeWarning)


def get_date_list(_g):
    all_dates = list(nx.get_edge_attributes(_g, "date").values())
    start_date = min(all_dates)
    end_date = max(all_dates)
    days = (end_date - start_date).days + 1
    date_list = [start_date + timedelta(days=n) for n in range(days)]
    return date_list


def construct_graph(_acct_csv, _tx_csv, _schema):
    """Load transaction CSV file and construct Graph
    :param _acct_csv: Account CSV file (e.g. output/accounts.csv)
    :param _tx_csv: Transaction CSV file (e.g. output/transactions.csv)
    :param _schema: Dict for schema from JSON file
    :return: Transaction Graph
    :rtype: nx.MultiDiGraph
    """
    _g = nx.MultiDiGraph()

    id_idx = None
    bank_idx = None
    sar_idx = None

    acct_schema = _schema["account"]
    for i, col in enumerate(acct_schema):
        data_type = col.get("dataType")
        if data_type == "account_id":
            id_idx = i
        elif data_type == "bank_id":
            bank_idx = i
        elif data_type == "sar_flag":
            sar_idx = i

    orig_idx = None
    bene_idx = None
    type_idx = None
    amt_idx = None
    date_idx = None

    with open(_acct_csv, "r") as _rf:
        reader = csv.reader(_rf)
        next(reader)  # Skip header

        for row in reader:
            acct_id = row[id_idx]
            bank_id = row[bank_idx]
            is_sar = row[sar_idx].lower() == "true"
            _g.add_node(acct_id, bank_id=bank_id, is_sar=is_sar)

    tx_schema = _schema["transaction"]
    for i, col in enumerate(tx_schema):
        data_type = col.get("dataType")
        if data_type == "orig_id":
            orig_idx = i
        elif data_type == "dest_id":
            bene_idx = i
        elif data_type == "transaction_type":
            type_idx = i
        elif data_type == "amount":
            amt_idx = i
        elif data_type == "timestamp":
            date_idx = i
        elif data_type == "sar_flag":
            sar_idx = i

    with open(_tx_csv, "r") as _rf:
        reader = csv.reader(_rf)
        next(reader)  # Skip header

        for row in reader:
            orig = row[orig_idx]
            bene = row[bene_idx]
            tx_type = row[type_idx]
            amount = float(row[amt_idx])
            date_str = row[date_idx].split("T")[0]
            date = datetime.strptime(date_str, "%Y-%m-%d")
            is_sar = row[sar_idx].lower() == "true"
            _g.add_edge(orig, bene, amount=amount, date=date, type=tx_type, is_sar=is_sar)

    return _g


def plot_degree_distribution(_g, _conf, _plot_img):
    """Plot degree distribution for accounts (vertices)
    :param _g: Transaction graph
    :param _conf: Configuration object
    :param _plot_img: Degree distribution image (log-log plot)
    :return:
    """
    # Load parameter files
    _input_conf = _conf["input"]
    _input_dir = _input_conf["directory"]
    _input_acct = _input_conf["accounts"]
    _input_deg = _input_conf["degree"]
    input_acct_path = os.path.join(_input_dir, _input_acct)
    input_deg_path = os.path.join(_input_dir, _input_deg)

    if not os.path.isfile(input_acct_path):
        print("Account parameter file %s is not found." % input_acct_path)
        return

    total_num_accts = 0
    with open(input_acct_path, "r") as _rf:
        reader = csv.reader(_rf)
        header = next(reader)
        count_idx = None
        for i, col in enumerate(header):
            if col == "count":
                count_idx = i
                break
        for row in reader:
            total_num_accts += int(row[count_idx])

    if not os.path.isfile(input_deg_path):
        print("Degree parameter file %s is not found." % input_deg_path)
        return

    deg_num_accts = 0
    in_degrees = list()
    in_deg_seq = list()
    in_deg_hist = list()
    out_degrees = list()
    out_deg_seq = list()
    out_deg_hist = list()
    with open(input_deg_path, "r") as _rf:
        reader = csv.reader(_rf)
        next(reader)
        for row in reader:
            deg = int(row[0])
            in_num = int(row[1])
            out_num = int(row[2])
            if in_num > 0:
                in_degrees.extend([deg] * in_num)
                in_deg_seq.append(deg)
                in_deg_hist.append(in_num)
                deg_num_accts += in_num
            if out_num > 0:
                out_degrees.extend([deg] * out_num)
                out_deg_seq.append(deg)
                out_deg_hist.append(out_num)

    multiplier = total_num_accts // deg_num_accts
    # print(total_num_accts, deg_num_accts, multiplier)
    in_degrees = [d * multiplier for d in in_degrees]
    in_deg_hist = [d * multiplier for d in in_deg_hist]
    out_degrees = [d * multiplier for d in out_degrees]
    out_deg_hist = [d * multiplier for d in out_deg_hist]

    # ax1, ax2: Expected in/out-degree distributions from parameter files
    # ax3, ax4: Output in/out-degree distributions from the output transaction list
    plt.clf()
    fig, axs = plt.subplots(2, 2, figsize=(16, 12))
    ax1, ax2, ax3, ax4 = axs[0, 0], axs[0, 1], axs[1, 0], axs[1, 1]

    pw_result = powerlaw.Fit(in_degrees, verbose=False)
    alpha = pw_result.power_law.alpha
    alpha_text = "alpha = %.2f" % alpha
    ax1.loglog(in_deg_seq, in_deg_hist, "bo-")
    ax1.set_title("Expected in-degree distribution")
    plt.text(0.75, 0.9, alpha_text, transform=ax1.transAxes)
    ax1.set_xlabel("In-degree")
    ax1.set_ylabel("Number of account vertices")

    pw_result = powerlaw.Fit(out_degrees, verbose=False)
    alpha = pw_result.power_law.alpha
    alpha_text = "alpha = %.2f" % alpha
    ax2.loglog(out_deg_seq, out_deg_hist, "ro-")
    ax2.set_title("Expected out-degree distribution")
    plt.text(0.75, 0.9, alpha_text, transform=ax2.transAxes)
    ax2.set_xlabel("Out-degree")
    ax2.set_ylabel("Number of account vertices")

    # Get degree from the output transaction list
    in_degrees = [len(_g.pred[n].keys()) for n in _g.nodes()]  # list(_g.in_degree().values())
    in_deg_seq = sorted(set(in_degrees))
    in_deg_hist = [in_degrees.count(x) for x in in_deg_seq]
    pw_result = powerlaw.Fit(in_degrees, verbose=False)
    alpha = pw_result.power_law.alpha
    alpha_text = "alpha = %.2f" % alpha
    ax3.loglog(in_deg_seq, in_deg_hist, "bo-")
    ax3.set_title("Output in-degree distribution")
    plt.text(0.75, 0.9, alpha_text, transform=ax3.transAxes)
    ax3.set_xlabel("In-degree")
    ax3.set_ylabel("Number of account vertices")

    out_degrees = [len(_g.succ[n].keys()) for n in _g.nodes()]  # list(_g.out_degree().values())
    # print("max out-degree", max(out_degrees))
    out_deg_seq = sorted(set(out_degrees))
    out_deg_hist = [out_degrees.count(x) for x in out_deg_seq]
    pw_result = powerlaw.Fit(out_degrees, verbose=False)
    alpha = pw_result.power_law.alpha
    alpha_text = "alpha = %.2f" % alpha
    ax4.loglog(out_deg_seq, out_deg_hist, "ro-")
    ax4.set_title("Output out-degree distribution")
    plt.text(0.75, 0.9, alpha_text, transform=ax4.transAxes)
    ax4.set_xlabel("Out-degree")
    ax4.set_ylabel("Number of account vertices")

    plt.savefig(_plot_img)


def plot_wcc_distribution(_g, _plot_img):
    """Plot weakly connected components size distributions
    :param _g: Transaction graph
    :param _plot_img: WCC size distribution image (log-log plot)
    :return:
    """
    all_wcc = nx.weakly_connected_components(_g)
    wcc_sizes = Counter([len(wcc) for wcc in all_wcc])
    size_seq = sorted(wcc_sizes.keys())
    size_hist = [wcc_sizes[x] for x in size_seq]

    plt.figure(figsize=(16, 12))
    plt.clf()
    plt.loglog(size_seq, size_hist, 'ro-')
    plt.title("WCC Size Distribution")
    plt.xlabel("Size")
    plt.ylabel("Number of WCCs")
    plt.savefig(_plot_img)


def plot_alert_stat(_alert_acct_csv, _alert_tx_csv, _schema, _plot_img):

    alert_member_count = Counter()
    alert_tx_count = Counter()
    alert_init_amount = dict()  # Initial amount
    alert_amount_list = defaultdict(list)  # All amount list
    alert_dates = defaultdict(list)
    alert_sar_flag = defaultdict(bool)
    alert_types = dict()
    label_alerts = defaultdict(list)  # label -> alert IDs

    alert_idx = None
    amt_idx = None
    date_idx = None
    type_idx = None
    # bank_idx = None
    sar_idx = None

    acct_schema = _schema["alert_member"]
    for i, col in enumerate(acct_schema):
        data_type = col.get("dataType")
        if data_type == "alert_id":
            alert_idx = i
        elif data_type == "alert_type":
            type_idx = i
        # elif data_type == "model_id":
        #     bank_idx = i
        elif data_type == "sar_flag":
            sar_idx = i

    with open(_alert_acct_csv, "r") as _rf:
        reader = csv.reader(_rf)
        next(reader)

        for row in reader:
            alert_id = row[alert_idx]
            alert_type = row[type_idx]
            # bank_id = row[bank_idx]
            is_sar = row[sar_idx].lower() == "true"

            alert_member_count[alert_id] += 1
            alert_sar_flag[alert_id] = is_sar
            alert_types[alert_id] = alert_type
            label = ("SAR" if is_sar else "Normal") + ":" + alert_type
            label_alerts[label].append(alert_id)

    tx_schema = _schema["alert_tx"]
    for i, col in enumerate(tx_schema):
        data_type = col.get("dataType")
        if data_type == "alert_id":
            alert_idx = i
        elif data_type == "amount":
            amt_idx = i
        elif data_type == "timestamp":
            date_idx = i

    with open(_alert_tx_csv, "r") as _rf:
        reader = csv.reader(_rf)
        next(reader)

        for row in reader:
            alert_id = row[alert_idx]
            amount = float(row[amt_idx])
            date_str = row[date_idx].split("T")[0]
            date = datetime.strptime(date_str, "%Y-%m-%d")

            alert_tx_count[alert_id] += 1
            if alert_id not in alert_init_amount:
                alert_init_amount[alert_id] = amount
            alert_amount_list[alert_id].append(amount)
            alert_dates[alert_id].append(date)

    # Scatter plot for all alerts
    # ax1: Number of member accounts and transaction amount range
    # ax2: Number of transactions and transaction period
    fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(8, 12))
    cmap = plt.get_cmap("tab10")
    for i, (label, alerts) in enumerate(label_alerts.items()):
        color = cmap(i)
        x = [alert_member_count[a] for a in alerts]
        y_init = np.array([alert_init_amount[a] for a in alerts])
        # y_med = np.array([np.median(alert_amount_list[a]) for a in alerts])
        # y_min = np.array([min(alert_amount_list[a]) for a in alerts])
        # y_max = np.array([max(alert_amount_list[a]) for a in alerts])
        # y_err = [y_med - y_min, y_max - y_med]

        ax1.scatter(x, y_init, s=50, color=color, label=label, edgecolors="none")
        for j, alert_id in enumerate(alerts):
            ax1.annotate(alert_id, (x[j], y_init[j]))
        # ax1.scatter(x, y_med, s=50, color=color, label=label, edgecolors="none")
        # ax1.errorbar(x, y_med, yerr=y_err, ecolor=color, ls="none")
        # for j, alert_id in enumerate(alerts):
        #     ax1.annotate(alert_id, (x[j], y_med[j]))

        x = [alert_tx_count[a] for a in alerts]
        y_period = [(max(alert_dates[a]) - min(alert_dates[a])).days + 1
                    for a in alerts]
        ax2.scatter(x, y_period, s=100, color=color, label=label, edgecolors="none")
        for j, alert_id in enumerate(alerts):
            ax2.annotate(alert_id, (x[j], y_period[j]))

    ax1.set_xlabel("Number of accounts per alert")
    ax1.set_ylabel("Initial transaction amount")
    # ax1.set_ylabel("Min/Median/Max transaction amount")
    ax1.legend()
    ax2.set_xlabel("Number of transactions per alert")
    ax2.set_ylabel("Transaction period")
    ax2.legend()
    plt.savefig(_plot_img)


def plot_aml_rule(aml_csv, _plot_img):
    """Plot the number of AML typologies
    :param aml_csv: AML typology pattern parameter CSV file
    :param _plot_img: Output image file (bar plot)
    """
    aml_types = Counter()
    num_idx = None
    type_idx = None

    if not os.path.isfile(aml_csv):
        print("AML typology file %s is not found." % aml_csv)
        return

    with open(aml_csv, "r") as _rf:
        reader = csv.reader(_rf)
        header = next(reader)
        for i, k in enumerate(header):
            if k == "count":
                num_idx = i
            elif k == "type":
                type_idx = i

        for row in reader:
            if "#" in row[0]:
                continue
            num = int(row[num_idx])
            aml_type = row[type_idx]
            aml_types[aml_type] += num

    x = list()
    y = list()
    for aml_type, num in aml_types.items():
        x.append(aml_type)
        y.append(num)

    plt.figure(figsize=(16, 12))
    plt.clf()
    plt.bar(range(len(x)), y, tick_label=x)
    plt.title("AML typologies")
    plt.xlabel("Typology name")
    plt.ylabel("Number of patterns")
    plt.savefig(_plot_img)


def plot_tx_count(_g, _plot_img):
    """Plot the number of normal and SAR transactions
    :param _g: Transaction graph
    :param _plot_img: Output image file path
    """
    date_list = get_date_list(_g)
    normal_tx_count = Counter()
    sar_tx_count = Counter()

    for _, _, attr in _g.edges(data=True):
        is_sar = attr["is_sar"]
        date = attr["date"]
        if is_sar:
            sar_tx_count[date] += 1
        else:
            normal_tx_count[date] += 1

    normal_tx_list = [normal_tx_count[d] for d in date_list]
    sar_tx_list = [sar_tx_count[d] for d in date_list]

    plt.figure(figsize=(16, 12))
    plt.clf()
    p_n = plt.plot(date_list, normal_tx_list, "b")
    p_f = plt.plot(date_list, sar_tx_list, "r")
    plt.yscale('log')
    plt.legend((p_n[0], p_f[0]), ("Normal", "SAR"))
    plt.title("Number of transactions per step")
    plt.xlabel("Simulation step")
    plt.ylabel("Number of transactions")
    plt.savefig(_plot_img)


def plot_clustering_coefficient(_g, _plot_img, interval=30):
    """Plot the clustering coefficient transition
    :param _g: Transaction graph
    :param _plot_img: Output image file
    :param interval: Simulation step interval for plotting
    (it takes too much time to compute clustering coefficient)
    :return:
    """
    date_list = get_date_list(_g)

    gg = nx.Graph()
    edges = defaultdict(list)
    for k, v in nx.get_edge_attributes(_g, "date").items():
        e = (k[0], k[1])
        edges[v].append(e)

    sample_dates = list()
    values = list()
    for i, t in enumerate(date_list):
        gg.add_edges_from(edges[t])
        if i % interval == 0:
            v = nx.average_clustering(gg) if gg.number_of_nodes() else 0.0
            sample_dates.append(t)
            values.append(v)
            print("Clustering coefficient at %s: %f" % (str(t), v))

    plt.figure(figsize=(16, 12))
    plt.clf()
    plt.plot(sample_dates, values, 'bo-')
    plt.title("Clustering Coefficient Transition")
    plt.xlabel("date")
    plt.ylabel("Clustering Coefficient")
    plt.savefig(_plot_img)


def plot_diameter(dia_csv, _plot_img):
    """Plot the diameter and the average of largest distance transitions
    :param dia_csv: Diameter transition CSV file
    :param _plot_img: Output image file
    :return:
    """
    x = list()
    dia = list()
    aver = list()

    with open(dia_csv, "r") as _rf:
        reader = csv.reader(_rf)
        next(reader)
        for row in reader:
            step = int(row[0])
            d = float(row[1])
            a = float(row[2])
            x.append(step)
            dia.append(d)
            aver.append(a)

    plt.figure(figsize=(16, 12))
    plt.clf()
    plt.ylim(0, max(dia) + 1)
    p_d = plt.plot(x, dia, "r")
    p_a = plt.plot(x, aver, "b")
    plt.legend((p_d[0], p_a[0]), ("Diameter", "Average"))
    plt.title("Diameter and Average Distance")
    plt.xlabel("Simulation step")
    plt.ylabel("Distance")
    plt.savefig(_plot_img)


def plot_bank2bank_count(_g: nx.MultiDiGraph, _plot_img: str):
    acct_bank = nx.get_node_attributes(_g, "bank_id")
    bank_list = sorted(set(acct_bank.values()))
    bank2bank_all = Counter()
    bank2bank_sar = Counter()

    for orig, bene, attr in _g.edges(data=True):
        orig_bank = acct_bank[orig]
        bene_bank = acct_bank[bene]
        is_sar = attr["is_sar"]
        bank_pair = (orig_bank, bene_bank)
        bank2bank_all[bank_pair] += 1
        if is_sar:
            bank2bank_sar[bank_pair] += 1

    total_num = _g.number_of_edges()
    internal_num = sum([num for pair, num in bank2bank_all.items() if pair[0] == pair[1]])
    external_num = total_num - internal_num
    internal_ratio = internal_num / total_num * 100
    external_ratio = external_num / total_num * 100
    internal_sar_num = sum([num for pair, num in bank2bank_sar.items() if pair[0] == pair[1]])
    external_sar_num = sum([num for pair, num in bank2bank_sar.items() if pair[0] != pair[1]])

    all_count_data = list()
    sar_count_data = list()
    for orig_bank in bank_list:
        all_count_row = [bank2bank_all[(orig_bank, bene_bank)] for bene_bank in bank_list]
        all_count_total = sum(all_count_row)
        all_count_data.append(all_count_row + [all_count_total])
        sar_count_row = [bank2bank_sar[(orig_bank, bene_bank)] for bene_bank in bank_list]
        sar_count_total = sum(sar_count_row)
        sar_count_data.append(sar_count_row + [sar_count_total])

    all_count_total = list()
    sar_count_total = list()
    for bene_bank in bank_list:
        all_count_total.append(sum([bank2bank_all[(orig_bank, bene_bank)] for orig_bank in bank_list]))
        sar_count_total.append(sum([bank2bank_sar[(orig_bank, bene_bank)] for orig_bank in bank_list]))
    all_count_total.append(sum(all_count_total))
    sar_count_total.append(sum(sar_count_total))

    all_count_data.append(all_count_total)
    sar_count_data.append(sar_count_total)

    all_count_csv = list()
    sar_count_csv = list()
    for row in all_count_data:
        all_count_csv.append(["{:,}".format(num) for num in row])
    for row in sar_count_data:
        sar_count_csv.append(["{:,}".format(num) for num in row])

    cols = ["To: %s" % bank for bank in bank_list] + ["Total"]
    rows = ["From: %s" % bank for bank in bank_list] + ["Total"]

    fig, (ax1, ax2) = plt.subplots(nrows=2, figsize=(9, 6))
    table_attr = {"rowLabels": rows, "colLabels": cols, "colWidths": [0.15 for _ in cols],
                  "loc": "center", "bbox": [0.15, 0.3, 0.75, 0.6]}
    ax1.axis("off")
    ax1.table(cellText=all_count_csv, **table_attr)
    ax1.set_title("Number of all bank-to-bank transactions")

    ax2.axis("off")
    ax2.table(cellText=sar_count_csv, **table_attr)
    ax2.set_title("Number of SAR bank-to-bank transactions")

    fig.suptitle("Internal bank transactions: Total = {:,} ({:.2f}%), SAR = {:,}".
                 format(internal_num, internal_ratio, internal_sar_num) + "\n" +
                 "External bank transactions: Total = {:,} ({:.2f}%), SAR = {:,}"
                 .format(external_num, external_ratio, external_sar_num),
                 y=0.1)
    plt.tight_layout()
    fig.savefig(_plot_img)


if __name__ == "__main__":
    argv = sys.argv

    if len(argv) < 2:
        print("Usage: python3 %s [ConfJSON]" % argv[0])
        exit(1)

    conf_json = argv[1]
    with open(conf_json, "r") as rf:
        conf = json.load(rf)

    input_dir = conf["input"]["directory"]
    schema_json = conf["input"]["schema"]
    schema_path = os.path.join(input_dir, schema_json)

    with open(schema_path, "r") as rf:
        schema = json.load(rf)

    sim_name = argv[2] if len(argv) >= 3 else conf["general"]["simulation_name"]
    work_dir = os.path.join(conf["output"]["directory"], sim_name)
    acct_csv = conf["output"]["accounts"]
    tx_csv = conf["output"]["transactions"]
    acct_path = os.path.join(work_dir, acct_csv)
    tx_path = os.path.join(work_dir, tx_csv)

    tmp_dir = conf["temporal"]["directory"]
    output_dir = conf["output"]["directory"]
    if not os.path.exists(tx_path):
        print("Transaction list CSV file %s not found." % tx_path)
        exit(1)

    print("Constructing transaction graph")
    g = construct_graph(acct_path, tx_path, schema)

    v_conf = conf["visualizer"]
    deg_plot = v_conf["degree"]
    wcc_plot = v_conf["wcc"]
    alert_plot = v_conf["alert"]
    count_plot = v_conf["count"]
    cc_plot = v_conf["clustering"]
    dia_plot = v_conf["diameter"]
    b2b_plot = "bank2bank.png"

    print("Plot degree distributions")
    plot_degree_distribution(g, conf, os.path.join(work_dir, deg_plot))

    print("Plot weakly connected component size distribution")
    plot_wcc_distribution(g, os.path.join(work_dir, wcc_plot))

    param_dir = conf["input"]["directory"]
    alert_param_file = conf["input"]["alert_patterns"]
    param_path = os.path.join(param_dir, alert_param_file)
    plot_path = os.path.join(work_dir, alert_plot)
    print("Plot AML typology count")
    plot_aml_rule(param_path, plot_path)

    alert_acct_csv = conf["output"]["alert_members"]
    alert_tx_csv = conf["output"]["alert_transactions"]
    alert_acct_path = os.path.join(work_dir, alert_acct_csv)
    alert_tx_path = os.path.join(work_dir, alert_tx_csv)

    print("Plot alert attribute distributions")
    plot_alert_stat(alert_acct_path, alert_tx_path, schema, os.path.join(work_dir, "alert_dist.png"))

    print("Plot transaction count per date")
    plot_tx_count(g, os.path.join(work_dir, count_plot))

    print("Plot clustering coefficient of the transaction graph")
    plot_clustering_coefficient(g, os.path.join(work_dir, cc_plot))

    dia_log = conf["output"]["diameter_log"]
    dia_path = os.path.join(work_dir, dia_log)
    if os.path.exists(dia_path):
        plot_img = os.path.join(work_dir, dia_plot)
        print("Plot diameter of the transaction graph")
        plot_diameter(dia_path, plot_img)
    else:
        print("Diameter log file %s not found." % dia_path)

    print("Plot bank-to-bank transaction counts")
    plot_bank2bank_count(g, os.path.join(work_dir, b2b_plot))