import numpy as np import torch import torch.nn as nn import torch.nn.functional as F @torch.jit.script def gaussian_analytical_kl(mu1, mu2, logsigma1, logsigma2): return -0.5 + logsigma2 - logsigma1 + 0.5 * (logsigma1.exp() ** 2 + (mu1 - mu2) ** 2) / (logsigma2.exp() ** 2) @torch.jit.script def draw_gaussian_diag_samples(mu, logsigma): eps = torch.empty_like(mu).normal_(0., 1.) return torch.exp(logsigma) * eps + mu def get_conv(in_dim, out_dim, kernel_size, stride, padding, zero_bias=True, zero_weights=False, groups=1, scaled=False): c = nn.Conv2d(in_dim, out_dim, kernel_size, stride, padding, groups=groups) if zero_bias: c.bias.data *= 0.0 if zero_weights: c.weight.data *= 0.0 return c def get_3x3(in_dim, out_dim, zero_bias=True, zero_weights=False, groups=1, scaled=False): return get_conv(in_dim, out_dim, 3, 1, 1, zero_bias, zero_weights, groups=groups, scaled=scaled) def get_1x1(in_dim, out_dim, zero_bias=True, zero_weights=False, groups=1, scaled=False): return get_conv(in_dim, out_dim, 1, 1, 0, zero_bias, zero_weights, groups=groups, scaled=scaled) def log_prob_from_logits(x): """ numerically stable log_softmax implementation that prevents overflow """ axis = len(x.shape) - 1 m = x.max(dim=axis, keepdim=True)[0] return x - m - torch.log(torch.exp(x - m).sum(dim=axis, keepdim=True)) def const_max(t, constant): other = torch.ones_like(t) * constant return torch.max(t, other) def const_min(t, constant): other = torch.ones_like(t) * constant return torch.min(t, other) def discretized_mix_logistic_loss(x, l, low_bit=False): """ log-likelihood for mixture of discretized logistics, assumes the data has been rescaled to [-1,1] interval """ # Adapted from https://github.com/openai/pixel-cnn/blob/master/pixel_cnn_pp/nn.py xs = [s for s in x.shape] # true image (i.e. labels) to regress to, e.g. (B,32,32,3) ls = [s for s in l.shape] # predicted distribution, e.g. (B,32,32,100) nr_mix = int(ls[-1] / 10) # here and below: unpacking the params of the mixture of logistics logit_probs = l[:, :, :, :nr_mix] l = torch.reshape(l[:, :, :, nr_mix:], xs + [nr_mix * 3]) means = l[:, :, :, :, :nr_mix] log_scales = const_max(l[:, :, :, :, nr_mix:2 * nr_mix], -7.) coeffs = torch.tanh(l[:, :, :, :, 2 * nr_mix:3 * nr_mix]) x = torch.reshape(x, xs + [1]) + torch.zeros(xs + [nr_mix]).to(x.device) # here and below: getting the means and adjusting them based on preceding sub-pixels m2 = torch.reshape(means[:, :, :, 1, :] + coeffs[:, :, :, 0, :] * x[:, :, :, 0, :], [xs[0], xs[1], xs[2], 1, nr_mix]) m3 = torch.reshape(means[:, :, :, 2, :] + coeffs[:, :, :, 1, :] * x[:, :, :, 0, :] + coeffs[:, :, :, 2, :] * x[:, :, :, 1, :], [xs[0], xs[1], xs[2], 1, nr_mix]) means = torch.cat([torch.reshape(means[:, :, :, 0, :], [xs[0], xs[1], xs[2], 1, nr_mix]), m2, m3], dim=3) centered_x = x - means inv_stdv = torch.exp(-log_scales) if low_bit: plus_in = inv_stdv * (centered_x + 1. / 31.) cdf_plus = torch.sigmoid(plus_in) min_in = inv_stdv * (centered_x - 1. / 31.) else: plus_in = inv_stdv * (centered_x + 1. / 255.) cdf_plus = torch.sigmoid(plus_in) min_in = inv_stdv * (centered_x - 1. / 255.) cdf_min = torch.sigmoid(min_in) log_cdf_plus = plus_in - F.softplus(plus_in) # log probability for edge case of 0 (before scaling) log_one_minus_cdf_min = -F.softplus(min_in) # log probability for edge case of 255 (before scaling) cdf_delta = cdf_plus - cdf_min # probability for all other cases mid_in = inv_stdv * centered_x log_pdf_mid = mid_in - log_scales - 2. * F.softplus(mid_in) # log probability in the center of the bin, to be used in extreme cases (not actually used in our code) # now select the right output: left edge case, right edge case, normal case, extremely low prob case (doesn't actually happen for us) # this is what we are really doing, but using the robust version below for extreme cases in other applications and to avoid NaN issue with tf.select() # log_probs = tf.select(x < -0.999, log_cdf_plus, tf.select(x > 0.999, log_one_minus_cdf_min, tf.log(cdf_delta))) # robust version, that still works if probabilities are below 1e-5 (which never happens in our code) # tensorflow backpropagates through tf.select() by multiplying with zero instead of selecting: this requires use to use some ugly tricks to avoid potential NaNs # the 1e-12 in tf.maximum(cdf_delta, 1e-12) is never actually used as output, it's purely there to get around the tf.select() gradient issue # if the probability on a sub-pixel is below 1e-5, we use an approximation based on the assumption that the log-density is constant in the bin of the observed sub-pixel value if low_bit: log_probs = torch.where(x < -0.999, log_cdf_plus, torch.where(x > 0.999, log_one_minus_cdf_min, torch.where(cdf_delta > 1e-5, torch.log(const_max(cdf_delta, 1e-12)), log_pdf_mid - np.log(15.5)))) else: log_probs = torch.where(x < -0.999, log_cdf_plus, torch.where(x > 0.999, log_one_minus_cdf_min, torch.where(cdf_delta > 1e-5, torch.log(const_max(cdf_delta, 1e-12)), log_pdf_mid - np.log(127.5)))) log_probs = log_probs.sum(dim=3) + log_prob_from_logits(logit_probs) mixture_probs = torch.logsumexp(log_probs, -1) return -1. * mixture_probs.sum(dim=[1, 2]) / np.prod(xs[1:]) def sample_from_discretized_mix_logistic(l, nr_mix): ls = [s for s in l.shape] xs = ls[:-1] + [3] # unpack parameters logit_probs = l[:, :, :, :nr_mix] l = torch.reshape(l[:, :, :, nr_mix:], xs + [nr_mix * 3]) # sample mixture indicator from softmax eps = torch.empty(logit_probs.shape, device=l.device).uniform_(1e-5, 1. - 1e-5) amax = torch.argmax(logit_probs - torch.log(-torch.log(eps)), dim=3) sel = F.one_hot(amax, num_classes=nr_mix).float() sel = torch.reshape(sel, xs[:-1] + [1, nr_mix]) # select logistic parameters means = (l[:, :, :, :, :nr_mix] * sel).sum(dim=4) log_scales = const_max((l[:, :, :, :, nr_mix:nr_mix * 2] * sel).sum(dim=4), -7.) coeffs = (torch.tanh(l[:, :, :, :, nr_mix * 2:nr_mix * 3]) * sel).sum(dim=4) # sample from logistic & clip to interval # we don't actually round to the nearest 8bit value when sampling u = torch.empty(means.shape, device=means.device).uniform_(1e-5, 1. - 1e-5) x = means + torch.exp(log_scales) * (torch.log(u) - torch.log(1. - u)) x0 = const_min(const_max(x[:, :, :, 0], -1.), 1.) x1 = const_min(const_max(x[:, :, :, 1] + coeffs[:, :, :, 0] * x0, -1.), 1.) x2 = const_min(const_max(x[:, :, :, 2] + coeffs[:, :, :, 1] * x0 + coeffs[:, :, :, 2] * x1, -1.), 1.) return torch.cat([torch.reshape(x0, xs[:-1] + [1]), torch.reshape(x1, xs[:-1] + [1]), torch.reshape(x2, xs[:-1] + [1])], dim=3) class HModule(nn.Module): def __init__(self, H): super().__init__() self.H = H self.build() class DmolNet(nn.Module): def __init__(self, H): super().__init__() self.H = H self.width = H.width self.out_conv = get_conv(H.width, H.num_mixtures * 10, kernel_size=1, stride=1, padding=0) def nll(self, px_z, x): return discretized_mix_logistic_loss(x=x, l=self.forward(px_z), low_bit=self.H.dataset in ['ffhq_256']) def forward(self, px_z): xhat = self.out_conv(px_z) return xhat.permute(0, 2, 3, 1) def sample(self, px_z): im = sample_from_discretized_mix_logistic(self.forward(px_z), self.H.num_mixtures) xhat = (im + 1.0) * 127.5 xhat = xhat.detach().cpu().numpy() xhat = np.minimum(np.maximum(0.0, xhat), 255.0).astype(np.uint8) return xhat