--- tags: - generated_from_trainer datasets: - wikiann metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-chinese-wikiann-zh-ner results: - task: name: Token Classification type: token-classification dataset: name: wikiann type: wikiann config: zh split: validation args: zh metrics: - name: Precision type: precision value: 0.7890612756621219 - name: Recall type: recall value: 0.8060513887777155 - name: F1 type: f1 value: 0.797465848346862 - name: Accuracy type: accuracy value: 0.9432393178410795 --- # bert-base-chinese-wikiann-zh-ner This model is a fine-tuned version of [bert-base-chinese](https://huggingface.co/bert-base-chinese) on the wikiann dataset. It achieves the following results on the evaluation set: - Loss: 0.2092 - Precision: 0.7891 - Recall: 0.8061 - F1: 0.7975 - Accuracy: 0.9432 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.842 | 0.16 | 400 | 0.3530 | 0.5535 | 0.6872 | 0.6131 | 0.8927 | | 0.32 | 0.32 | 800 | 0.2800 | 0.6929 | 0.6749 | 0.6838 | 0.9190 | | 0.2928 | 0.48 | 1200 | 0.2438 | 0.7031 | 0.7661 | 0.7333 | 0.9301 | | 0.245 | 0.64 | 1600 | 0.2525 | 0.6959 | 0.7919 | 0.7408 | 0.9280 | | 0.2236 | 0.8 | 2000 | 0.2315 | 0.7441 | 0.7503 | 0.7472 | 0.9342 | | 0.2444 | 0.96 | 2400 | 0.2119 | 0.7719 | 0.7675 | 0.7697 | 0.9379 | | 0.1899 | 1.12 | 2800 | 0.2267 | 0.7531 | 0.8062 | 0.7788 | 0.9387 | | 0.1649 | 1.28 | 3200 | 0.2249 | 0.7519 | 0.8202 | 0.7846 | 0.9395 | | 0.1521 | 1.44 | 3600 | 0.2220 | 0.7778 | 0.8032 | 0.7903 | 0.9413 | | 0.1787 | 1.6 | 4000 | 0.2185 | 0.7879 | 0.7860 | 0.7869 | 0.9417 | | 0.146 | 1.76 | 4400 | 0.2134 | 0.7721 | 0.8128 | 0.7919 | 0.9416 | | 0.1557 | 1.92 | 4800 | 0.2111 | 0.7857 | 0.8101 | 0.7977 | 0.9429 | ### Framework versions - Transformers 4.27.4 - Pytorch 2.0.0+cu118 - Datasets 2.11.0 - Tokenizers 0.13.3