davidliu1110 commited on
Commit
aff5ca0
·
1 Parent(s): 3e85c7a

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +101 -0
README.md ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ datasets:
5
+ - wikiann
6
+ metrics:
7
+ - precision
8
+ - recall
9
+ - f1
10
+ - accuracy
11
+ model-index:
12
+ - name: bert-base-chinese-wikiann-zh-ner
13
+ results:
14
+ - task:
15
+ name: Token Classification
16
+ type: token-classification
17
+ dataset:
18
+ name: wikiann
19
+ type: wikiann
20
+ config: zh
21
+ split: validation
22
+ args: zh
23
+ metrics:
24
+ - name: Precision
25
+ type: precision
26
+ value: 0.7890612756621219
27
+ - name: Recall
28
+ type: recall
29
+ value: 0.8060513887777155
30
+ - name: F1
31
+ type: f1
32
+ value: 0.797465848346862
33
+ - name: Accuracy
34
+ type: accuracy
35
+ value: 0.9432393178410795
36
+ ---
37
+
38
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
39
+ should probably proofread and complete it, then remove this comment. -->
40
+
41
+ # bert-base-chinese-wikiann-zh-ner
42
+
43
+ This model is a fine-tuned version of [bert-base-chinese](https://huggingface.co/bert-base-chinese) on the wikiann dataset.
44
+ It achieves the following results on the evaluation set:
45
+ - Loss: 0.2092
46
+ - Precision: 0.7891
47
+ - Recall: 0.8061
48
+ - F1: 0.7975
49
+ - Accuracy: 0.9432
50
+
51
+ ## Model description
52
+
53
+ More information needed
54
+
55
+ ## Intended uses & limitations
56
+
57
+ More information needed
58
+
59
+ ## Training and evaluation data
60
+
61
+ More information needed
62
+
63
+ ## Training procedure
64
+
65
+ ### Training hyperparameters
66
+
67
+ The following hyperparameters were used during training:
68
+ - learning_rate: 2e-05
69
+ - train_batch_size: 8
70
+ - eval_batch_size: 8
71
+ - seed: 42
72
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
73
+ - lr_scheduler_type: linear
74
+ - lr_scheduler_warmup_ratio: 0.1
75
+ - num_epochs: 2
76
+ - mixed_precision_training: Native AMP
77
+
78
+ ### Training results
79
+
80
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
+ | 0.842 | 0.16 | 400 | 0.3530 | 0.5535 | 0.6872 | 0.6131 | 0.8927 |
83
+ | 0.32 | 0.32 | 800 | 0.2800 | 0.6929 | 0.6749 | 0.6838 | 0.9190 |
84
+ | 0.2928 | 0.48 | 1200 | 0.2438 | 0.7031 | 0.7661 | 0.7333 | 0.9301 |
85
+ | 0.245 | 0.64 | 1600 | 0.2525 | 0.6959 | 0.7919 | 0.7408 | 0.9280 |
86
+ | 0.2236 | 0.8 | 2000 | 0.2315 | 0.7441 | 0.7503 | 0.7472 | 0.9342 |
87
+ | 0.2444 | 0.96 | 2400 | 0.2119 | 0.7719 | 0.7675 | 0.7697 | 0.9379 |
88
+ | 0.1899 | 1.12 | 2800 | 0.2267 | 0.7531 | 0.8062 | 0.7788 | 0.9387 |
89
+ | 0.1649 | 1.28 | 3200 | 0.2249 | 0.7519 | 0.8202 | 0.7846 | 0.9395 |
90
+ | 0.1521 | 1.44 | 3600 | 0.2220 | 0.7778 | 0.8032 | 0.7903 | 0.9413 |
91
+ | 0.1787 | 1.6 | 4000 | 0.2185 | 0.7879 | 0.7860 | 0.7869 | 0.9417 |
92
+ | 0.146 | 1.76 | 4400 | 0.2134 | 0.7721 | 0.8128 | 0.7919 | 0.9416 |
93
+ | 0.1557 | 1.92 | 4800 | 0.2111 | 0.7857 | 0.8101 | 0.7977 | 0.9429 |
94
+
95
+
96
+ ### Framework versions
97
+
98
+ - Transformers 4.27.4
99
+ - Pytorch 2.0.0+cu118
100
+ - Datasets 2.11.0
101
+ - Tokenizers 0.13.3