Update README.md
Browse files
README.md
CHANGED
@@ -3,114 +3,137 @@ library_name: transformers
|
|
3 |
license: apache-2.0
|
4 |
base_model: answerdotai/ModernBERT-base
|
5 |
tags:
|
6 |
-
-
|
|
|
7 |
datasets:
|
8 |
-
- davanstrien/reasoning-
|
9 |
language:
|
10 |
- en
|
11 |
-
|
12 |
-
-
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
---
|
15 |
|
16 |
-
#
|
17 |
-
|
18 |
-
<img src="https://cdn-uploads.huggingface.co/production/uploads/60107b385ac3e86b3ea4fc34/vqCMlr4g95ysSAZ2eAn7D.png" alt="ModernBERT-based
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
-
|
27 |
-
-
|
28 |
-
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
-
|
51 |
-
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
license: apache-2.0
|
4 |
base_model: answerdotai/ModernBERT-base
|
5 |
tags:
|
6 |
+
- reasoning
|
7 |
+
- reasoning-datasets-competition
|
8 |
datasets:
|
9 |
+
- davanstrien/natural-reasoning-classifier
|
10 |
language:
|
11 |
- en
|
12 |
+
metrics:
|
13 |
+
- mse
|
14 |
+
- mae
|
15 |
+
- spearman
|
16 |
+
widget:
|
17 |
+
- text: >-
|
18 |
+
The debate on artificial intelligence's role in society has become
|
19 |
+
increasingly polarized. Some argue that AI will lead to widespread
|
20 |
+
unemployment and concentration of power, while others contend it will create
|
21 |
+
new jobs and democratize access to knowledge. These viewpoints reflect
|
22 |
+
different assumptions about technological development, economic systems, and
|
23 |
+
human adaptability.
|
24 |
---
|
25 |
|
26 |
+
# ModernBERT Reasoning Complexity Regressor
|
27 |
+
|
28 |
+
<img src="https://cdn-uploads.huggingface.co/production/uploads/60107b385ac3e86b3ea4fc34/vqCMlr4g95ysSAZ2eAn7D.png" alt="ModernBERT-based Reasoning Complexity Regressor" width=500px>
|
29 |
+
|
30 |
+
## Model Description
|
31 |
+
|
32 |
+
This model predicts the reasoning complexity level (0-4) required to engage with a given text. It's fine-tuned from [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the [davanstrien/natural-reasoning-classifier](https://huggingface.co/datasets/davanstrien/natural-reasoning-classifier) dataset.
|
33 |
+
|
34 |
+
The reasoning complexity scale ranges from:
|
35 |
+
|
36 |
+
- **0: Minimal Reasoning** - Simple factual content requiring only recall
|
37 |
+
- **1: Basic Reasoning** - Straightforward connections or single-step logical processes
|
38 |
+
- **2: Intermediate Reasoning** - Integration of multiple factors or perspectives
|
39 |
+
- **3: Advanced Reasoning** - Sophisticated analysis across multiple dimensions
|
40 |
+
- **4: Expert Reasoning** - Theoretical frameworks and novel conceptual synthesis
|
41 |
+
|
42 |
+
## Performance
|
43 |
+
|
44 |
+
The model achieves the following results on the evaluation set:
|
45 |
+
|
46 |
+
- MSE: 0.2034
|
47 |
+
- MAE: 0.2578
|
48 |
+
- Spearman Correlation: 0.6963
|
49 |
+
|
50 |
+
## Intended Uses
|
51 |
+
|
52 |
+
This model can be used to:
|
53 |
+
|
54 |
+
- Filter and classify educational content by reasoning complexity
|
55 |
+
- Identify complex reasoning problems across diverse domains
|
56 |
+
- Serve as a first-stage filter in a reasoning dataset creation pipeline
|
57 |
+
|
58 |
+
## Limitations
|
59 |
+
|
60 |
+
- Predictions are influenced by the original dataset's domain distribution
|
61 |
+
- Reasoning complexity is subjective and context-dependent
|
62 |
+
|
63 |
+
|
64 |
+
## Training
|
65 |
+
|
66 |
+
The model was fine-tuned using a regression objective with the following settings:
|
67 |
+
- Learning rate: 5e-05
|
68 |
+
- Batch size: 16
|
69 |
+
- Optimizer: AdamW
|
70 |
+
- Schedule: Linear
|
71 |
+
- Epochs: 10
|
72 |
+
|
73 |
+
## Usage Examples
|
74 |
+
|
75 |
+
### Using the pipeline API
|
76 |
+
|
77 |
+
```python
|
78 |
+
from transformers import pipeline
|
79 |
+
pipe = pipeline("text-classification", model="davanstrien/ModernBERT-based-Reasoning-Required")
|
80 |
+
|
81 |
+
def predict_reasoning_level(text, pipe):
|
82 |
+
# Get the raw prediction
|
83 |
+
result = pipe(text)
|
84 |
+
score = result[0]['score']
|
85 |
+
|
86 |
+
# Round to nearest integer (optional)
|
87 |
+
rounded_score = round(score)
|
88 |
+
|
89 |
+
# Clip to valid range (0-4)
|
90 |
+
rounded_score = max(0, min(4, rounded_score))
|
91 |
+
|
92 |
+
# Create a human-readable interpretation (optional)
|
93 |
+
reasoning_labels = {
|
94 |
+
0: "No reasoning",
|
95 |
+
1: "Basic reasoning",
|
96 |
+
2: "Moderate reasoning",
|
97 |
+
3: "Strong reasoning",
|
98 |
+
4: "Advanced reasoning"
|
99 |
+
}
|
100 |
+
|
101 |
+
return {
|
102 |
+
"raw_score": score,
|
103 |
+
"reasoning_level": rounded_score,
|
104 |
+
"interpretation": reasoning_labels[rounded_score]
|
105 |
+
}
|
106 |
+
|
107 |
+
# Usage
|
108 |
+
text = "This argument uses multiple sources and evaluates competing perspectives before reaching a conclusion."
|
109 |
+
result = predict_reasoning_level(text, pipe)
|
110 |
+
print(f"Raw score: {result['raw_score']:.2f}")
|
111 |
+
print(f"Reasoning level: {result['reasoning_level']}")
|
112 |
+
print(f"Interpretation: {result['interpretation']}")
|
113 |
+
```
|
114 |
+
|
115 |
+
### Using the model directly
|
116 |
+
|
117 |
+
```python
|
118 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
119 |
+
import torch
|
120 |
+
|
121 |
+
# Load model and tokenizer
|
122 |
+
model_name = "davanstrien/modernbert-reasoning-complexity"
|
123 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
124 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
125 |
+
|
126 |
+
# Prepare text
|
127 |
+
text = "The debate on artificial intelligence's role in society has become increasingly polarized."
|
128 |
+
|
129 |
+
# Tokenize and predict
|
130 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512)
|
131 |
+
with torch.no_grad():
|
132 |
+
outputs = model(**inputs)
|
133 |
+
|
134 |
+
# Get regression score
|
135 |
+
complexity_score = outputs.logits.item()
|
136 |
+
print(f"Reasoning Complexity: {complexity_score:.2f}/4.00")
|
137 |
+
```
|
138 |
+
|
139 |
+
|