Datasets:

Modalities:
Text
Languages:
English
ArXiv:
Libraries:
Datasets
License:
File size: 4,572 Bytes
9e31b69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
"""CiteSum dataset"""

import hashlib
import os

import datasets


logger = datasets.logging.get_logger(__name__)


_HOMEPAGE = "https://github.com/morningmoni/CiteSum"

_DESCRIPTION = """\
Citation Text-guided Scientific Extreme Summarization and Low-resource Domain Adaptation
CiteSum contains TLDR summaries for scientific papers from their citation texts without human annotation.
CiteSum is around 30 times larger than the previous human-curated dataset SciTLDR.
"""

# The second citation introduces the source data, while the first
# introduces the specific form (non-anonymized) we use here.
_CITATION = """\
@misc{https://doi.org/10.48550/arxiv.2205.06207,
  doi = {10.48550/ARXIV.2205.06207},
  url = {https://arxiv.org/abs/2205.06207},
  author = {Mao, Yuning and Zhong, Ming and Han, Jiawei},
  keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
  title = {CiteSum: Citation Text-guided Scientific Extreme Summarization and Low-resource Domain Adaptation},
  publisher = {arXiv},
  year = {2022},
  copyright = {Creative Commons Attribution 4.0 International}
}

"""

_DOWNLOAD_URL = "https://drive.google.com/file/d/1ndHCREXGSPnDUNllladh9qCtayqbXAfJ"


class CiteSumConfig(datasets.BuilderConfig):
    """BuilderConfig for CiteSum."""

    def __init__(self, **kwargs):
        """BuilderConfig for CiteSum.
        Args:
          **kwargs: keyword arguments forwarded to super.
        """
        super().__init__(**kwargs)


class CiteSum(datasets.GeneratorBasedBuilder):
    """CiteSum summarization dataset."""

    BUILDER_CONFIGS = [CiteSumConfig(name="citesum", description="Plain text")]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "src": datasets.Value("string"),
                    "tgt": datasets.Value("string"),
                    "paper_id": datasets.Value("string"),
                    "title": datasets.Value("string"),
                    "discipline": {
                        "venue": datasets.Value("string"),
                        "journal": datasets.Value("string"),
                        "mag_field_of_study": datasets.features.Sequence(
                            datasets.Value("string")
                        ),
                    },
                }
            ),
            supervised_keys=None,
            homepage=_HOMEPAGE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        dl_paths = dl_manager.download(_DOWNLOAD_URL)
        return [
            datasets.SplitGenerator(
                name=split,
                gen_kwargs={
                    "urls_file": dl_paths[split],
                    "files_per_archive": [
                        dl_manager.iter_archive(dl_paths["cnn_stories"]),
                        dl_manager.iter_archive(dl_paths["dm_stories"]),
                    ],
                },
            )
            for split in [
                datasets.Split.TRAIN,
                datasets.Split.VALIDATION,
                datasets.Split.TEST,
            ]
        ]

    def _generate_examples(self, urls_file, files_per_archive):
        urls = _get_url_hashes(urls_file)
        idx = 0
        for files in files_per_archive:
            for path, file in files:
                hash_from_path = _get_hash_from_path(path)
                if hash_from_path in urls:
                    article, highlights = _get_art_abs(file, self.config.version)
                    if not article or not highlights:
                        continue
                    yield idx, {
                        _ARTICLE: article,
                        _HIGHLIGHTS: highlights,
                        "id": hash_from_path,
                    }
                    idx += 1