Datasets:

Modalities:
Tabular
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 7,093 Bytes
1be89f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import enum
import os
from pathlib import Path

import click
import matplotlib.pyplot as plt
import polars as pl


class ImageFormat(enum.Enum):
    PNG = "png"
    JPEG = "jpg"


@click.command()
@click.option(
    "--src_dir",
    type=click.Path(exists=True, file_okay=False),
    required=True,
    help="Path to the directory containing dataset, e.g., './data'.",
)
@click.option(
    "--dst_dir",
    type=click.Path(file_okay=False),
    required=False,
    help="Path to the directory where statisics will be saved. "
    "If not specified, statistics is saved in '{src_dir}/stats'. e.g., './stats'.",
)
@click.option(
    "--file_name",
    type=str,
    default="multi_event",
    help="Base name for multi-event file. Default is 'multi_event'.",
)
def cli(src_dir: str, dst_dir: str, file_name: str):
    if dst_dir is None:
        dst_dir = f"{src_dir}/stats"
    generate_dataset_stats(src_dir, dst_dir, file_name)


def generate_dataset_stats(src_dir: str, dst_dir: str, file_name: str):
    src_dir, dst_dir = Path(src_dir), Path(dst_dir)
    src_dir_flat, src_dir_seq = src_dir / "flat", src_dir / "sequential"

    file_name = f"{file_name}.parquet"
    sizes = sorted(path.name for path in src_dir_flat.iterdir())
    for size in sizes:
        path_flat, path_seq = src_dir_flat / size, src_dir_seq / size
        assert path_seq.exists(), f"Cannot find sequential data in '{path_seq}'"
        assert (path_flat / file_name).exists(), (
            "Please, generate flat multi-event file using "
            "'make_multievent.py' or specify correct name using --file_name"
        )
        assert (path_seq / file_name).exists(), (
            "Please, generate sequential multi-event file "
            "using 'transform2sequential.py' script or specify correct name "
            "using --file_name"
        )

        print(f"Gathering stats for {size}...")
        dst_dir_size = dst_dir / size
        dst_dir_size.mkdir(parents=True, exist_ok=True)

        df = pl.scan_parquet(path_seq / file_name)
        generate_user_history_graph(df, dst_dir_size / "user_history_len.png")
        generate_log_user_history_graph(df, dst_dir_size / "user_history_log_len.png")

        df = pl.scan_parquet(path_flat / file_name)
        generate_item_interactions_graph(df, dst_dir_size / "item_interactions.png")
        get_recom_stats(df).write_csv(dst_dir_size / "recom_event_count.csv")
        get_history_len_stats(df).write_csv(dst_dir_size / "event_history_len.csv")
        get_dataset_stats(df).write_csv(dst_dir_size / "dataset_event_stats.csv")


def make_history_len_graph(
    df: pl.DataFrame,
    *,
    qs: tuple[float] | None = None,
    color: str = "lightskyblue",
    num_bins: int = 100,
    title: str | None = None,
    xlabel: str | None = None,
    ylabel: str | None = None,
    ax: plt.Axes | None = None,
) -> plt.Axes:
    if ax is None:
        _, ax = plt.subplots(figsize=(12, 5))

    count, _, _ = ax.hist(df["value"], bins=num_bins, ec="k", lw=1.0, color=color)
    ylim = count.max() * 1.05

    xs = {"max": df["value"].max()}
    if qs is not None:
        xs.update((f"q{q * 100:.0f}", df["value"].quantile(q)) for q in qs)

    dx = 0.01 * (xs["max"] - df["value"].min())
    template = "{label}={x:.3f}" if xs["max"] <= 10 else "{label}={x:.0f}"
    for label, x in xs.items():
        ax.plot([x, x], [0, ylim], ls="--", c="k")
        text = template.format(label=label, x=x)
        ax.text(x + dx, ylim // 2, text, rotation=90, fontsize=16, bbox=dict(alpha=0.1, color="r"))

    if title is not None:
        ax.set_title(title, fontsize=24)
    ax.set_xlabel(xlabel or "Value", fontsize=22)
    ax.set_ylabel(ylabel or "Count", fontsize=22)

    ax.set_ylim([0, ylim])

    ax.tick_params(labelsize=16)
    ax.ticklabel_format(style="sci", useMathText=True)


def save_graph(output_path: os.PathLike, fmt: ImageFormat = ImageFormat.PNG):
    output_path = Path(output_path)
    if not output_path.suffix:
        output_path = output_path.with_suffix(f".{fmt.value}")

    if output_path.exists():
        print(f"Rewriting file '{output_path}'")
    else:
        print(f"Saving to '{output_path}'")

    plt.savefig(output_path, dpi=300, format=fmt.value)


def generate_user_history_graph(df: pl.LazyFrame, out_path: os.PathLike):
    _, ax = plt.subplots(figsize=(12, 5))

    make_history_len_graph(
        df.select(value=pl.col("item_id").list.len()).collect(),
        num_bins=100,
        qs=(0.5, 0.9, 0.95),
        xlabel="Events",
        ylabel="Users",
        ax=ax,
    )
    plt.tight_layout()
    save_graph(out_path)


def generate_log_user_history_graph(df: pl.LazyFrame, out_path: os.PathLike):
    _, ax = plt.subplots(figsize=(12, 5))

    make_history_len_graph(
        df.select(value=pl.col("item_id").list.len().log10()).collect(),
        num_bins=40,
        xlabel="$Log_{10}$(Events)",
        ylabel="Users",
        color="lightgreen",
        ax=ax,
    )
    plt.tight_layout()
    save_graph(out_path)


def generate_item_interactions_graph(df: pl.LazyFrame, out_path: os.PathLike):
    _, ax = plt.subplots(figsize=(12, 5))

    make_history_len_graph(
        df.group_by("item_id").len().select(value=pl.col("len").log10()).collect(),
        num_bins=30,
        qs=(0.5, 0.9, 0.95),
        xlabel="$Log_{10}$(Events)",
        ylabel="Items",
        color="orange",
        ax=ax,
    )
    plt.tight_layout()
    save_graph(out_path)


def get_recom_stats(df: pl.LazyFrame) -> pl.DataFrame:
    print("Computing recom stats")
    df_cnt = df.group_by(("event_type", "is_organic")).len().collect()
    df_recom = df_cnt.filter(pl.col("is_organic").eq(0)).select(pl.col("event_type"), pl.col("len").alias("recom"))
    df_total = df_cnt.group_by("event_type").sum().select(pl.col("event_type"), pl.col("len").alias("total"))
    return df_total.join(df_recom, on="event_type").with_columns(ratio=pl.col("recom") / pl.col("total"))


def get_history_len_stats(df: pl.LazyFrame) -> pl.DataFrame:
    print("Computing event history length stats")
    return (
        df.group_by(("event_type", "uid"))
        .len()
        .group_by("event_type")
        .agg(
            median=pl.col("len").quantile(0.5).cast(pl.Int32),
            q90=pl.col("len").quantile(0.9).cast(pl.Int32),
            q95=pl.col("len").quantile(0.95).cast(pl.Int32),
        )
        .collect()
    )


def get_dataset_stats(df: pl.LazyFrame) -> pl.DataFrame:
    print("Computing dataset stats")
    return df.select(
        users=pl.col("uid").unique().len(),
        items=pl.col("item_id").unique().len(),
        listens=pl.col("event_type").filter(pl.col("event_type").eq("listen")).len(),
        likes=pl.col("event_type").filter(pl.col("event_type").eq("like")).len(),
        dislikes=pl.col("event_type").filter(pl.col("event_type").eq("dislike")).len(),
        unlikes=pl.col("event_type").filter(pl.col("event_type").eq("unlike")).len(),
        undislikes=pl.col("event_type").filter(pl.col("event_type").eq("undislike")).len(),
    ).collect()


if __name__ == "__main__":
    cli()