whalezzz commited on
Commit
e68fc33
·
verified ·
1 Parent(s): 50fce67

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +46 -3
README.md CHANGED
@@ -1,3 +1,46 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ task_categories:
4
+ - text-to-image
5
+ - visual-question-answering
6
+ language:
7
+ - en
8
+ ---
9
+ # Data statices of M2RAG
10
+
11
+ Click the links below to view our paper and Github project.
12
+ <a href='https://arxiv.org/abs/2502.17297'><img src='https://img.shields.io/badge/Paper-Arxiv-red'></a><a href='https://github.com/NEUIR/M2RAG'><img src="https://img.shields.io/badge/Github-M2RAG-blue?logo=Github"></a>
13
+
14
+ If you find this work useful, please cite our paper and give us a shining star 🌟 in Github
15
+
16
+ ```
17
+ @misc{liu2025benchmarkingretrievalaugmentedgenerationmultimodal,
18
+ title={Benchmarking Retrieval-Augmented Generation in Multi-Modal Contexts},
19
+ author={Zhenghao Liu and Xingsheng Zhu and Tianshuo Zhou and Xinyi Zhang and Xiaoyuan Yi and Yukun Yan and Yu Gu and Ge Yu and Maosong Sun},
20
+ year={2025},
21
+ eprint={2502.17297},
22
+ archivePrefix={arXiv},
23
+ primaryClass={cs.AI},
24
+ url={https://arxiv.org/abs/2502.17297},
25
+ }
26
+ ```
27
+ ## 🎃 Overview
28
+
29
+ The **M²RAG** benchmark evaluates Multi-modal Large Language Models (MLLMs) by using multi-modal retrieved documents to answer questions. It includes four tasks: image captioning, multi-modal QA, fact verification, and image reranking, assessing MLLMs’ ability to leverage knowledge from multi-modal contexts.
30
+
31
+ <p align="center">
32
+ <img align="middle" src="https://raw.githubusercontent.com/NEUIR/M2RAG/main/assets/m2rag.png" style="width: 600px;" alt="m2rag"/>
33
+ </p>
34
+
35
+ ## 🎃 Data Storage Structure
36
+ The data storage structure of M2RAG is as follows:
37
+ ```
38
+ M2RAG/
39
+ ├──fact_verify/
40
+ ├──image_cap/
41
+ ├──image_rerank/
42
+ ├──mmqa/
43
+ ├──imgs.lineidx.new
44
+ └──imgs.tsv
45
+ ```
46
+ ❗️Note: To obtain the ```imgs.tsv```, you can follow the instructions in the [WebQA](https://github.com/WebQnA/WebQA?tab=readme-ov-file#download-data) project. Specifically, you need to first download all the data from the folder [WebQA_imgs_7z_chunks](https://drive.google.com/drive/folders/19ApkbD5w0I5sV1IeQ9EofJRyAjKnA7tb), and then run the command ``` 7z x imgs.7z.001```to unzip and merge all chunks to get the imgs.tsv.