File size: 15,019 Bytes
6d46163
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f882d20
6d46163
058cca4
6d46163
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f882d20
6d46163
 
 
f882d20
6d46163
 
 
 
 
 
 
 
 
 
 
7b807a0
5bde1dd
7b807a0
6d46163
 
 
 
 
 
 
 
 
 
 
 
058cca4
6d46163
7b807a0
6d46163
 
 
 
 
 
 
 
 
 
 
 
 
 
058cca4
79b837d
f61e329
12a9032
dc88717
1317898
6f57f9a
db175a2
43835b1
7fd49e0
ae3c9aa
d4e6b0a
1f600b8
47171df
5d8e04a
7ed7224
eb76869
245cac4
1654728
faeaee7
ca3fab9
54d8f81
5e882e5
464634e
a489261
3dfc5fe
f1e58a6
94729c2
7b1b445
c0ba5b6
a2fbf93
d7ff18b
2c7e4cc
3e8c307
dd93ac9
61ce714
e4a1b61
a5a6cde
2efc0ce
fb496b5
a67f117
7efd54a
52a1231
9a31a5e
08d3346
f3a032a
bcdb496
013e86d
d7145dd
0ecc661
949d842
019954c
950476b
3843659
cbe0206
d06b308
556a5e4
d2a2dd9
d3573c6
ad20d87
ce1903f
ea6160b
565e1d3
3d4d5ee
92a912e
05669cd
a6b1ddd
7b83dcd
d22c57b
86b9f14
41012a8
c57bc09
8695380
6f0adea
ad710e6
4a8bcae
a107712
9b0697c
5bf1be7
94a7bec
19e7c84
9a79104
ca9f2c2
4d3464b
d0c5b64
6461638
d6edf22
34e944c
2d7025d
2073eed
faf36ab
92047fd
ca6bbb1
f84677f
6cb8c66
aa14d4c
c320025
747d520
0fe08d5
e85e0e9
270a13d
b99a88b
f381463
4232c1a
76bb6bb
775facd
d4f131d
0ad47e0
01fde83
64055b4
5240b95
883f0b8
2841a4b
1d1312d
77a019f
d66f4b3
47867ce
03ccdbd
0a8e3eb
e7a05aa
b5be6e8
8dd3e55
a7baee0
1086b8a
a48bbb9
c788b3d
cf03c53
f7f5ed4
9163eeb
e826c82
d8f40a5
929d7db
7c3442e
db40dbc
471f4e5
6fac6c3
63a2c05
9855b04
ed0060a
6e5d713
faf9f75
148e5a9
686be51
46d7bbf
4baabd1
e37e01a
82bb039
1073c63
66d2061
be2b982
35db353
4002dfc
e931dd9
d3bcb18
867fd5f
5ea635e
989eab2
32693b1
e4d166f
1f08123
2d6f0bd
2230e2e
93a42ea
5e2e32d
9619fd9
15f78bb
674d0fe
0281023
c97d4bf
384983b
55dd27e
96e7438
92d231f
e914944
cef892a
67c296a
10bdf48
dccd384
b6d8aba
0583df2
8b43e3c
9e443c6
1ab548a
1dd4964
a35b21a
104235b
d22fbe7
3b3981a
3aa48c2
519610e
1ee39a7
cafcdfb
0e459ca
7bb4af6
18c0d27
fa51224
3c99831
a4e9750
fba56ab
80527a8
2a9a8ac
b5a490d
2409cd8
2abe5e9
10ec32b
1fb3db2
425f892
94aba5c
8ae2275
5a91266
8e7f2be
6fa14e6
ceeed2c
ea7c077
0113565
3a5d63e
28c7f72
8a90274
dcf8d6c
3d67dd5
5bde1dd
cbb35ad
4e2ea9e
a530a65
7b807a0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
---
license: mit
multilinguality:
  - multilingual
source_datasets:
  - original
task_categories:
  - text-classification
  - token-classification
  - question-answering
  - summarization
  - text-generation
task_ids:
  - sentiment-analysis
  - topic-classification
  - named-entity-recognition
  - language-modeling
  - text-scoring
  - multi-class-classification
  - multi-label-classification
  - extractive-qa
  - news-articles-summarization
---


# Bittensor Subnet 13 X (Twitter) Dataset

<center>
    <img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/bittensor.png" alt="Data-universe: The finest collection of social media data the web has to offer">
</center>

<center>
    <img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/macrocosmos-black.png" alt="Data-universe: The finest collection of social media data the web has to offer">
</center>


## Dataset Description

- **Repository:** wavecreator22/x_dataset_108
- **Subnet:** Bittensor Subnet 13
- **Miner Hotkey:** 5C4ocMvKomsyb5WNeNqzBTPErtJ3AeyX81Y1dAYnDex66wBu

### Miner Data Compliance Agreement 

In uploading this dataset, I am agreeing to the [Macrocosmos Miner Data Compliance Policy](https://github.com/macrocosm-os/data-universe/blob/add-miner-policy/docs/miner_policy.md). 


### Dataset Summary

This dataset is part of the Bittensor Subnet 13 decentralized network, containing preprocessed data from X (formerly Twitter). The data is continuously updated by network miners, providing a real-time stream of tweets for various analytical and machine learning tasks.
For more information about the dataset, please visit the [official repository](https://github.com/macrocosm-os/data-universe).

### Supported Tasks

The versatility of this dataset allows researchers and data scientists to explore various aspects of social media dynamics and develop innovative applications. Users are encouraged to leverage this data creatively for their specific research or business needs.
For example: 
- Sentiment Analysis
- Trend Detection
- Content Analysis
- User Behavior Modeling

### Languages

Primary language: Datasets are mostly English, but can be multilingual due to decentralized ways of creation.

## Dataset Structure

### Data Instances

Each instance represents a single tweet with the following fields:


### Data Fields

- `text` (string): The main content of the tweet.
- `label` (string): Sentiment or topic category of the tweet.
- `tweet_hashtags` (list): A list of hashtags used in the tweet. May be empty if no hashtags are present.
- `datetime` (string): The date when the tweet was posted.
- `username_encoded` (string): An encoded version of the username to maintain user privacy.
- `url_encoded` (string): An encoded version of any URLs included in the tweet. May be empty if no URLs are present.

### Data Splits

This dataset is continuously updated and does not have fixed splits. Users should create their own splits based on their requirements and the data's timestamp.

## Dataset Creation

### Source Data

Data is collected from public tweets on X (Twitter), adhering to the platform's terms of service and API usage guidelines.

### Personal and Sensitive Information

All usernames and URLs are encoded to protect user privacy. The dataset does not intentionally include personal or sensitive information.

## Considerations for Using the Data

### Social Impact and Biases

Users should be aware of potential biases inherent in X (Twitter) data, including demographic and content biases. This dataset reflects the content and opinions expressed on X and should not be considered a representative sample of the general population.

### Limitations

- Data quality may vary due to the decentralized nature of collection and preprocessing.
- The dataset may contain noise, spam, or irrelevant content typical of social media platforms.
- Temporal biases may exist due to real-time collection methods.
- The dataset is limited to public tweets and does not include private accounts or direct messages.
- Not all tweets contain hashtags or URLs.

## Additional Information

### Licensing Information

The dataset is released under the MIT license. The use of this dataset is also subject to X Terms of Use.

### Citation Information

If you use this dataset in your research, please cite it as follows:

```
@misc{wavecreator222025datauniversex_dataset_108,
        title={The Data Universe Datasets: The finest collection of social media data the web has to offer},
        author={wavecreator22},
        year={2025},
        url={https://huggingface.co/datasets/wavecreator22/x_dataset_108},
        }
```

### Contributions

To report issues or contribute to the dataset, please contact the miner or use the Bittensor Subnet 13 governance mechanisms.

## Dataset Statistics

[This section is automatically updated]

- **Total Instances:** 195096635
- **Date Range:** 2025-03-19T00:00:00Z to 2025-06-01T00:00:00Z
- **Last Updated:** 2025-06-08T09:30:55Z

### Data Distribution

- Tweets with hashtags: 13.88%
- Tweets without hashtags: 86.12%

### Top 10 Hashtags

For full statistics, please refer to the `stats.json` file in the repository.

| Rank | Topic | Total Count | Percentage |
|------|-------|-------------|-------------|
| 1 | NULL | 168023398 | 86.12% |
| 2 | #tiktok | 998124 | 0.51% |
| 3 | #ad | 629945 | 0.32% |
| 4 | #pr | 472003 | 0.24% |
| 5 | #granhermano | 333912 | 0.17% |
| 6 | #amazon | 290847 | 0.15% |
| 7 | #yahooニュース | 289907 | 0.15% |
| 8 | #bbb25 | 278156 | 0.14% |
| 9 | #riyadh | 249773 | 0.13% |
| 10 | #lacasadelosfamososcol | 225517 | 0.12% |


## Update History

| Date | New Instances | Total Instances |
|------|---------------|-----------------|
| 2025-04-21T16:59:34Z | 195096410 | 195096410 |
| 2025-04-22T15:03:45Z | 1 | 195096411 |
| 2025-04-22T15:50:51Z | 1 | 195096412 |
| 2025-04-23T09:05:55Z | 1 | 195096413 |
| 2025-04-24T02:41:59Z | 1 | 195096414 |
| 2025-04-24T19:55:31Z | 1 | 195096415 |
| 2025-04-25T12:56:37Z | 1 | 195096416 |
| 2025-04-26T05:57:40Z | 1 | 195096417 |
| 2025-04-26T22:58:42Z | 1 | 195096418 |
| 2025-04-27T15:59:45Z | 1 | 195096419 |
| 2025-04-28T09:00:57Z | 1 | 195096420 |
| 2025-04-29T02:02:22Z | 1 | 195096421 |
| 2025-04-29T19:03:26Z | 1 | 195096422 |
| 2025-04-30T12:04:27Z | 1 | 195096423 |
| 2025-05-01T05:06:14Z | 1 | 195096424 |
| 2025-05-01T22:07:28Z | 1 | 195096425 |
| 2025-05-01T23:09:44Z | 1 | 195096426 |
| 2025-05-02T16:33:57Z | 1 | 195096427 |
| 2025-05-03T09:36:50Z | 1 | 195096428 |
| 2025-05-04T02:39:26Z | 1 | 195096429 |
| 2025-05-04T20:12:05Z | 1 | 195096430 |
| 2025-05-05T13:14:32Z | 1 | 195096431 |
| 2025-05-06T06:17:09Z | 1 | 195096432 |
| 2025-05-07T00:18:47Z | 1 | 195096433 |
| 2025-05-07T17:20:53Z | 1 | 195096434 |
| 2025-05-08T10:22:38Z | 1 | 195096435 |
| 2025-05-08T11:25:06Z | 1 | 195096436 |
| 2025-05-09T04:27:01Z | 1 | 195096437 |
| 2025-05-09T21:28:43Z | 1 | 195096438 |
| 2025-05-10T14:30:27Z | 1 | 195096439 |
| 2025-05-11T07:31:58Z | 1 | 195096440 |
| 2025-05-12T00:33:56Z | 1 | 195096441 |
| 2025-05-12T17:35:59Z | 1 | 195096442 |
| 2025-05-13T10:49:06Z | 1 | 195096443 |
| 2025-05-14T03:51:41Z | 1 | 195096444 |
| 2025-05-14T20:54:00Z | 1 | 195096445 |
| 2025-05-14T21:57:11Z | 1 | 195096446 |
| 2025-05-17T12:28:50Z | 1 | 195096447 |
| 2025-05-18T05:47:19Z | 1 | 195096448 |
| 2025-05-20T10:22:02Z | 1 | 195096449 |
| 2025-05-21T03:26:58Z | 1 | 195096450 |
| 2025-05-21T20:29:11Z | 1 | 195096451 |
| 2025-05-22T13:31:06Z | 1 | 195096452 |
| 2025-05-23T06:33:05Z | 1 | 195096453 |
| 2025-05-23T23:34:53Z | 1 | 195096454 |
| 2025-05-25T08:59:29Z | 1 | 195096455 |
| 2025-05-25T11:11:15Z | 1 | 195096456 |
| 2025-05-26T12:30:57Z | 1 | 195096457 |
| 2025-05-26T13:31:49Z | 1 | 195096458 |
| 2025-05-26T14:33:03Z | 1 | 195096459 |
| 2025-05-26T15:34:26Z | 1 | 195096460 |
| 2025-05-26T16:35:45Z | 1 | 195096461 |
| 2025-05-26T17:37:28Z | 1 | 195096462 |
| 2025-05-26T18:38:20Z | 1 | 195096463 |
| 2025-05-26T19:39:05Z | 1 | 195096464 |
| 2025-05-26T20:39:46Z | 1 | 195096465 |
| 2025-05-26T21:40:31Z | 1 | 195096466 |
| 2025-05-26T22:41:15Z | 1 | 195096467 |
| 2025-05-26T23:41:59Z | 1 | 195096468 |
| 2025-05-27T00:42:41Z | 1 | 195096469 |
| 2025-05-27T01:43:32Z | 1 | 195096470 |
| 2025-05-27T02:44:30Z | 1 | 195096471 |
| 2025-05-27T03:45:28Z | 1 | 195096472 |
| 2025-05-27T04:46:39Z | 1 | 195096473 |
| 2025-05-27T05:47:39Z | 1 | 195096474 |
| 2025-05-27T06:49:02Z | 1 | 195096475 |
| 2025-05-27T07:50:48Z | 1 | 195096476 |
| 2025-05-27T08:52:39Z | 1 | 195096477 |
| 2025-05-27T09:54:33Z | 1 | 195096478 |
| 2025-05-27T10:57:01Z | 1 | 195096479 |
| 2025-05-27T11:58:30Z | 1 | 195096480 |
| 2025-05-27T13:00:08Z | 1 | 195096481 |
| 2025-05-27T14:01:45Z | 1 | 195096482 |
| 2025-05-27T15:03:27Z | 1 | 195096483 |
| 2025-05-27T16:05:10Z | 1 | 195096484 |
| 2025-05-27T17:06:45Z | 1 | 195096485 |
| 2025-05-27T18:08:28Z | 1 | 195096486 |
| 2025-05-27T19:09:52Z | 1 | 195096487 |
| 2025-05-27T20:10:48Z | 1 | 195096488 |
| 2025-05-27T21:11:43Z | 1 | 195096489 |
| 2025-05-27T22:12:29Z | 1 | 195096490 |
| 2025-05-27T23:13:17Z | 1 | 195096491 |
| 2025-05-28T00:14:02Z | 1 | 195096492 |
| 2025-05-28T01:14:49Z | 1 | 195096493 |
| 2025-05-28T02:15:36Z | 1 | 195096494 |
| 2025-05-28T03:16:38Z | 1 | 195096495 |
| 2025-05-28T04:17:55Z | 1 | 195096496 |
| 2025-05-28T05:18:58Z | 1 | 195096497 |
| 2025-05-28T06:20:04Z | 1 | 195096498 |
| 2025-05-28T07:21:35Z | 1 | 195096499 |
| 2025-05-28T08:23:14Z | 1 | 195096500 |
| 2025-05-28T09:24:52Z | 1 | 195096501 |
| 2025-05-28T10:26:24Z | 1 | 195096502 |
| 2025-05-28T11:28:18Z | 1 | 195096503 |
| 2025-05-28T12:30:25Z | 1 | 195096504 |
| 2025-05-28T13:32:02Z | 1 | 195096505 |
| 2025-05-28T14:33:42Z | 1 | 195096506 |
| 2025-05-28T15:35:47Z | 1 | 195096507 |
| 2025-05-28T16:37:35Z | 1 | 195096508 |
| 2025-05-28T17:39:28Z | 1 | 195096509 |
| 2025-05-28T18:41:20Z | 1 | 195096510 |
| 2025-05-28T19:42:16Z | 1 | 195096511 |
| 2025-05-28T20:43:11Z | 1 | 195096512 |
| 2025-05-28T21:44:06Z | 1 | 195096513 |
| 2025-05-28T22:45:00Z | 1 | 195096514 |
| 2025-05-28T23:45:51Z | 1 | 195096515 |
| 2025-05-29T00:46:40Z | 1 | 195096516 |
| 2025-05-29T01:47:32Z | 1 | 195096517 |
| 2025-05-29T02:48:26Z | 1 | 195096518 |
| 2025-05-29T03:49:37Z | 1 | 195096519 |
| 2025-05-29T04:50:46Z | 1 | 195096520 |
| 2025-05-29T05:52:52Z | 1 | 195096521 |
| 2025-05-29T06:54:36Z | 1 | 195096522 |
| 2025-05-29T07:56:30Z | 1 | 195096523 |
| 2025-05-29T08:58:38Z | 1 | 195096524 |
| 2025-05-29T10:00:18Z | 1 | 195096525 |
| 2025-05-29T11:02:05Z | 1 | 195096526 |
| 2025-05-29T12:03:38Z | 1 | 195096527 |
| 2025-05-29T13:05:15Z | 1 | 195096528 |
| 2025-05-29T14:06:56Z | 1 | 195096529 |
| 2025-05-29T15:08:34Z | 1 | 195096530 |
| 2025-05-29T16:10:15Z | 1 | 195096531 |
| 2025-05-29T17:12:49Z | 1 | 195096532 |
| 2025-05-29T18:14:30Z | 1 | 195096533 |
| 2025-05-29T19:16:11Z | 1 | 195096534 |
| 2025-05-29T20:16:59Z | 1 | 195096535 |
| 2025-05-29T21:18:05Z | 1 | 195096536 |
| 2025-05-29T22:19:05Z | 1 | 195096537 |
| 2025-05-29T23:20:14Z | 1 | 195096538 |
| 2025-05-30T00:21:01Z | 1 | 195096539 |
| 2025-05-30T01:21:48Z | 1 | 195096540 |
| 2025-05-30T02:23:03Z | 1 | 195096541 |
| 2025-05-30T03:24:25Z | 1 | 195096542 |
| 2025-05-30T04:25:57Z | 1 | 195096543 |
| 2025-05-30T05:27:19Z | 1 | 195096544 |
| 2025-05-30T06:28:49Z | 1 | 195096545 |
| 2025-05-30T07:30:27Z | 1 | 195096546 |
| 2025-05-30T08:32:11Z | 1 | 195096547 |
| 2025-05-30T09:33:59Z | 1 | 195096548 |
| 2025-05-30T10:35:47Z | 1 | 195096549 |
| 2025-05-30T11:37:39Z | 1 | 195096550 |
| 2025-05-30T12:39:40Z | 1 | 195096551 |
| 2025-05-30T13:41:37Z | 1 | 195096552 |
| 2025-05-30T14:43:36Z | 1 | 195096553 |
| 2025-05-30T15:45:51Z | 1 | 195096554 |
| 2025-05-30T16:47:56Z | 1 | 195096555 |
| 2025-05-30T17:49:59Z | 1 | 195096556 |
| 2025-05-30T18:51:37Z | 1 | 195096557 |
| 2025-05-30T19:53:31Z | 1 | 195096558 |
| 2025-05-30T20:54:37Z | 1 | 195096559 |
| 2025-05-30T21:55:30Z | 1 | 195096560 |
| 2025-05-30T22:56:27Z | 1 | 195096561 |
| 2025-05-30T23:57:32Z | 1 | 195096562 |
| 2025-05-31T00:58:17Z | 1 | 195096563 |
| 2025-05-31T01:59:13Z | 1 | 195096564 |
| 2025-05-31T03:00:36Z | 1 | 195096565 |
| 2025-05-31T04:02:28Z | 1 | 195096566 |
| 2025-05-31T05:03:57Z | 1 | 195096567 |
| 2025-05-31T06:05:38Z | 1 | 195096568 |
| 2025-05-31T07:07:26Z | 1 | 195096569 |
| 2025-05-31T08:09:13Z | 1 | 195096570 |
| 2025-05-31T09:10:49Z | 1 | 195096571 |
| 2025-05-31T10:12:31Z | 1 | 195096572 |
| 2025-05-31T11:14:18Z | 1 | 195096573 |
| 2025-05-31T12:16:08Z | 1 | 195096574 |
| 2025-05-31T13:17:40Z | 1 | 195096575 |
| 2025-05-31T14:19:30Z | 1 | 195096576 |
| 2025-05-31T15:21:33Z | 1 | 195096577 |
| 2025-05-31T16:23:19Z | 1 | 195096578 |
| 2025-05-31T17:25:34Z | 1 | 195096579 |
| 2025-05-31T18:27:34Z | 1 | 195096580 |
| 2025-05-31T19:29:32Z | 1 | 195096581 |
| 2025-05-31T20:31:07Z | 1 | 195096582 |
| 2025-05-31T21:31:55Z | 1 | 195096583 |
| 2025-05-31T22:32:43Z | 1 | 195096584 |
| 2025-05-31T23:33:34Z | 1 | 195096585 |
| 2025-06-01T00:34:24Z | 1 | 195096586 |
| 2025-06-01T01:35:23Z | 1 | 195096587 |
| 2025-06-01T02:36:25Z | 1 | 195096588 |
| 2025-06-01T03:37:34Z | 1 | 195096589 |
| 2025-06-01T04:39:17Z | 1 | 195096590 |
| 2025-06-01T05:40:43Z | 1 | 195096591 |
| 2025-06-01T06:42:15Z | 1 | 195096592 |
| 2025-06-06T14:02:06Z | 1 | 195096593 |
| 2025-06-06T15:17:00Z | 1 | 195096594 |
| 2025-06-06T16:34:22Z | 1 | 195096595 |
| 2025-06-06T17:35:50Z | 1 | 195096596 |
| 2025-06-06T18:37:19Z | 1 | 195096597 |
| 2025-06-06T19:38:57Z | 1 | 195096598 |
| 2025-06-06T20:40:29Z | 1 | 195096599 |
| 2025-06-06T21:41:52Z | 1 | 195096600 |
| 2025-06-06T22:43:34Z | 1 | 195096601 |
| 2025-06-06T23:45:14Z | 1 | 195096602 |
| 2025-06-07T00:46:41Z | 1 | 195096603 |
| 2025-06-07T01:48:02Z | 1 | 195096604 |
| 2025-06-07T02:49:22Z | 1 | 195096605 |
| 2025-06-07T03:50:44Z | 1 | 195096606 |
| 2025-06-07T04:51:59Z | 1 | 195096607 |
| 2025-06-07T05:53:17Z | 1 | 195096608 |
| 2025-06-07T06:54:34Z | 1 | 195096609 |
| 2025-06-07T07:55:50Z | 1 | 195096610 |
| 2025-06-07T08:57:05Z | 1 | 195096611 |
| 2025-06-07T09:58:19Z | 1 | 195096612 |
| 2025-06-07T10:59:29Z | 1 | 195096613 |
| 2025-06-07T12:01:04Z | 1 | 195096614 |
| 2025-06-07T13:02:30Z | 1 | 195096615 |
| 2025-06-07T14:03:48Z | 1 | 195096616 |
| 2025-06-07T15:05:10Z | 1 | 195096617 |
| 2025-06-07T16:06:44Z | 1 | 195096618 |
| 2025-06-07T17:08:07Z | 1 | 195096619 |
| 2025-06-07T18:09:38Z | 1 | 195096620 |
| 2025-06-07T19:11:11Z | 1 | 195096621 |
| 2025-06-07T20:12:51Z | 1 | 195096622 |
| 2025-06-07T21:14:16Z | 1 | 195096623 |
| 2025-06-07T22:15:59Z | 1 | 195096624 |
| 2025-06-07T23:17:33Z | 1 | 195096625 |
| 2025-06-08T00:18:55Z | 1 | 195096626 |
| 2025-06-08T01:20:16Z | 1 | 195096627 |
| 2025-06-08T02:21:33Z | 1 | 195096628 |
| 2025-06-08T03:22:52Z | 1 | 195096629 |
| 2025-06-08T04:24:15Z | 1 | 195096630 |
| 2025-06-08T05:25:40Z | 1 | 195096631 |
| 2025-06-08T06:27:00Z | 1 | 195096632 |
| 2025-06-08T07:28:17Z | 1 | 195096633 |
| 2025-06-08T08:29:38Z | 1 | 195096634 |
| 2025-06-08T09:30:55Z | 1 | 195096635 |