File size: 15,019 Bytes
6d46163 f882d20 6d46163 058cca4 6d46163 f882d20 6d46163 f882d20 6d46163 7b807a0 5bde1dd 7b807a0 6d46163 058cca4 6d46163 7b807a0 6d46163 058cca4 79b837d f61e329 12a9032 dc88717 1317898 6f57f9a db175a2 43835b1 7fd49e0 ae3c9aa d4e6b0a 1f600b8 47171df 5d8e04a 7ed7224 eb76869 245cac4 1654728 faeaee7 ca3fab9 54d8f81 5e882e5 464634e a489261 3dfc5fe f1e58a6 94729c2 7b1b445 c0ba5b6 a2fbf93 d7ff18b 2c7e4cc 3e8c307 dd93ac9 61ce714 e4a1b61 a5a6cde 2efc0ce fb496b5 a67f117 7efd54a 52a1231 9a31a5e 08d3346 f3a032a bcdb496 013e86d d7145dd 0ecc661 949d842 019954c 950476b 3843659 cbe0206 d06b308 556a5e4 d2a2dd9 d3573c6 ad20d87 ce1903f ea6160b 565e1d3 3d4d5ee 92a912e 05669cd a6b1ddd 7b83dcd d22c57b 86b9f14 41012a8 c57bc09 8695380 6f0adea ad710e6 4a8bcae a107712 9b0697c 5bf1be7 94a7bec 19e7c84 9a79104 ca9f2c2 4d3464b d0c5b64 6461638 d6edf22 34e944c 2d7025d 2073eed faf36ab 92047fd ca6bbb1 f84677f 6cb8c66 aa14d4c c320025 747d520 0fe08d5 e85e0e9 270a13d b99a88b f381463 4232c1a 76bb6bb 775facd d4f131d 0ad47e0 01fde83 64055b4 5240b95 883f0b8 2841a4b 1d1312d 77a019f d66f4b3 47867ce 03ccdbd 0a8e3eb e7a05aa b5be6e8 8dd3e55 a7baee0 1086b8a a48bbb9 c788b3d cf03c53 f7f5ed4 9163eeb e826c82 d8f40a5 929d7db 7c3442e db40dbc 471f4e5 6fac6c3 63a2c05 9855b04 ed0060a 6e5d713 faf9f75 148e5a9 686be51 46d7bbf 4baabd1 e37e01a 82bb039 1073c63 66d2061 be2b982 35db353 4002dfc e931dd9 d3bcb18 867fd5f 5ea635e 989eab2 32693b1 e4d166f 1f08123 2d6f0bd 2230e2e 93a42ea 5e2e32d 9619fd9 15f78bb 674d0fe 0281023 c97d4bf 384983b 55dd27e 96e7438 92d231f e914944 cef892a 67c296a 10bdf48 dccd384 b6d8aba 0583df2 8b43e3c 9e443c6 1ab548a 1dd4964 a35b21a 104235b d22fbe7 3b3981a 3aa48c2 519610e 1ee39a7 cafcdfb 0e459ca 7bb4af6 18c0d27 fa51224 3c99831 a4e9750 fba56ab 80527a8 2a9a8ac b5a490d 2409cd8 2abe5e9 10ec32b 1fb3db2 425f892 94aba5c 8ae2275 5a91266 8e7f2be 6fa14e6 ceeed2c ea7c077 0113565 3a5d63e 28c7f72 8a90274 dcf8d6c 3d67dd5 5bde1dd cbb35ad 4e2ea9e a530a65 7b807a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 |
---
license: mit
multilinguality:
- multilingual
source_datasets:
- original
task_categories:
- text-classification
- token-classification
- question-answering
- summarization
- text-generation
task_ids:
- sentiment-analysis
- topic-classification
- named-entity-recognition
- language-modeling
- text-scoring
- multi-class-classification
- multi-label-classification
- extractive-qa
- news-articles-summarization
---
# Bittensor Subnet 13 X (Twitter) Dataset
<center>
<img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/bittensor.png" alt="Data-universe: The finest collection of social media data the web has to offer">
</center>
<center>
<img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/macrocosmos-black.png" alt="Data-universe: The finest collection of social media data the web has to offer">
</center>
## Dataset Description
- **Repository:** wavecreator22/x_dataset_108
- **Subnet:** Bittensor Subnet 13
- **Miner Hotkey:** 5C4ocMvKomsyb5WNeNqzBTPErtJ3AeyX81Y1dAYnDex66wBu
### Miner Data Compliance Agreement
In uploading this dataset, I am agreeing to the [Macrocosmos Miner Data Compliance Policy](https://github.com/macrocosm-os/data-universe/blob/add-miner-policy/docs/miner_policy.md).
### Dataset Summary
This dataset is part of the Bittensor Subnet 13 decentralized network, containing preprocessed data from X (formerly Twitter). The data is continuously updated by network miners, providing a real-time stream of tweets for various analytical and machine learning tasks.
For more information about the dataset, please visit the [official repository](https://github.com/macrocosm-os/data-universe).
### Supported Tasks
The versatility of this dataset allows researchers and data scientists to explore various aspects of social media dynamics and develop innovative applications. Users are encouraged to leverage this data creatively for their specific research or business needs.
For example:
- Sentiment Analysis
- Trend Detection
- Content Analysis
- User Behavior Modeling
### Languages
Primary language: Datasets are mostly English, but can be multilingual due to decentralized ways of creation.
## Dataset Structure
### Data Instances
Each instance represents a single tweet with the following fields:
### Data Fields
- `text` (string): The main content of the tweet.
- `label` (string): Sentiment or topic category of the tweet.
- `tweet_hashtags` (list): A list of hashtags used in the tweet. May be empty if no hashtags are present.
- `datetime` (string): The date when the tweet was posted.
- `username_encoded` (string): An encoded version of the username to maintain user privacy.
- `url_encoded` (string): An encoded version of any URLs included in the tweet. May be empty if no URLs are present.
### Data Splits
This dataset is continuously updated and does not have fixed splits. Users should create their own splits based on their requirements and the data's timestamp.
## Dataset Creation
### Source Data
Data is collected from public tweets on X (Twitter), adhering to the platform's terms of service and API usage guidelines.
### Personal and Sensitive Information
All usernames and URLs are encoded to protect user privacy. The dataset does not intentionally include personal or sensitive information.
## Considerations for Using the Data
### Social Impact and Biases
Users should be aware of potential biases inherent in X (Twitter) data, including demographic and content biases. This dataset reflects the content and opinions expressed on X and should not be considered a representative sample of the general population.
### Limitations
- Data quality may vary due to the decentralized nature of collection and preprocessing.
- The dataset may contain noise, spam, or irrelevant content typical of social media platforms.
- Temporal biases may exist due to real-time collection methods.
- The dataset is limited to public tweets and does not include private accounts or direct messages.
- Not all tweets contain hashtags or URLs.
## Additional Information
### Licensing Information
The dataset is released under the MIT license. The use of this dataset is also subject to X Terms of Use.
### Citation Information
If you use this dataset in your research, please cite it as follows:
```
@misc{wavecreator222025datauniversex_dataset_108,
title={The Data Universe Datasets: The finest collection of social media data the web has to offer},
author={wavecreator22},
year={2025},
url={https://huggingface.co/datasets/wavecreator22/x_dataset_108},
}
```
### Contributions
To report issues or contribute to the dataset, please contact the miner or use the Bittensor Subnet 13 governance mechanisms.
## Dataset Statistics
[This section is automatically updated]
- **Total Instances:** 195096635
- **Date Range:** 2025-03-19T00:00:00Z to 2025-06-01T00:00:00Z
- **Last Updated:** 2025-06-08T09:30:55Z
### Data Distribution
- Tweets with hashtags: 13.88%
- Tweets without hashtags: 86.12%
### Top 10 Hashtags
For full statistics, please refer to the `stats.json` file in the repository.
| Rank | Topic | Total Count | Percentage |
|------|-------|-------------|-------------|
| 1 | NULL | 168023398 | 86.12% |
| 2 | #tiktok | 998124 | 0.51% |
| 3 | #ad | 629945 | 0.32% |
| 4 | #pr | 472003 | 0.24% |
| 5 | #granhermano | 333912 | 0.17% |
| 6 | #amazon | 290847 | 0.15% |
| 7 | #yahooニュース | 289907 | 0.15% |
| 8 | #bbb25 | 278156 | 0.14% |
| 9 | #riyadh | 249773 | 0.13% |
| 10 | #lacasadelosfamososcol | 225517 | 0.12% |
## Update History
| Date | New Instances | Total Instances |
|------|---------------|-----------------|
| 2025-04-21T16:59:34Z | 195096410 | 195096410 |
| 2025-04-22T15:03:45Z | 1 | 195096411 |
| 2025-04-22T15:50:51Z | 1 | 195096412 |
| 2025-04-23T09:05:55Z | 1 | 195096413 |
| 2025-04-24T02:41:59Z | 1 | 195096414 |
| 2025-04-24T19:55:31Z | 1 | 195096415 |
| 2025-04-25T12:56:37Z | 1 | 195096416 |
| 2025-04-26T05:57:40Z | 1 | 195096417 |
| 2025-04-26T22:58:42Z | 1 | 195096418 |
| 2025-04-27T15:59:45Z | 1 | 195096419 |
| 2025-04-28T09:00:57Z | 1 | 195096420 |
| 2025-04-29T02:02:22Z | 1 | 195096421 |
| 2025-04-29T19:03:26Z | 1 | 195096422 |
| 2025-04-30T12:04:27Z | 1 | 195096423 |
| 2025-05-01T05:06:14Z | 1 | 195096424 |
| 2025-05-01T22:07:28Z | 1 | 195096425 |
| 2025-05-01T23:09:44Z | 1 | 195096426 |
| 2025-05-02T16:33:57Z | 1 | 195096427 |
| 2025-05-03T09:36:50Z | 1 | 195096428 |
| 2025-05-04T02:39:26Z | 1 | 195096429 |
| 2025-05-04T20:12:05Z | 1 | 195096430 |
| 2025-05-05T13:14:32Z | 1 | 195096431 |
| 2025-05-06T06:17:09Z | 1 | 195096432 |
| 2025-05-07T00:18:47Z | 1 | 195096433 |
| 2025-05-07T17:20:53Z | 1 | 195096434 |
| 2025-05-08T10:22:38Z | 1 | 195096435 |
| 2025-05-08T11:25:06Z | 1 | 195096436 |
| 2025-05-09T04:27:01Z | 1 | 195096437 |
| 2025-05-09T21:28:43Z | 1 | 195096438 |
| 2025-05-10T14:30:27Z | 1 | 195096439 |
| 2025-05-11T07:31:58Z | 1 | 195096440 |
| 2025-05-12T00:33:56Z | 1 | 195096441 |
| 2025-05-12T17:35:59Z | 1 | 195096442 |
| 2025-05-13T10:49:06Z | 1 | 195096443 |
| 2025-05-14T03:51:41Z | 1 | 195096444 |
| 2025-05-14T20:54:00Z | 1 | 195096445 |
| 2025-05-14T21:57:11Z | 1 | 195096446 |
| 2025-05-17T12:28:50Z | 1 | 195096447 |
| 2025-05-18T05:47:19Z | 1 | 195096448 |
| 2025-05-20T10:22:02Z | 1 | 195096449 |
| 2025-05-21T03:26:58Z | 1 | 195096450 |
| 2025-05-21T20:29:11Z | 1 | 195096451 |
| 2025-05-22T13:31:06Z | 1 | 195096452 |
| 2025-05-23T06:33:05Z | 1 | 195096453 |
| 2025-05-23T23:34:53Z | 1 | 195096454 |
| 2025-05-25T08:59:29Z | 1 | 195096455 |
| 2025-05-25T11:11:15Z | 1 | 195096456 |
| 2025-05-26T12:30:57Z | 1 | 195096457 |
| 2025-05-26T13:31:49Z | 1 | 195096458 |
| 2025-05-26T14:33:03Z | 1 | 195096459 |
| 2025-05-26T15:34:26Z | 1 | 195096460 |
| 2025-05-26T16:35:45Z | 1 | 195096461 |
| 2025-05-26T17:37:28Z | 1 | 195096462 |
| 2025-05-26T18:38:20Z | 1 | 195096463 |
| 2025-05-26T19:39:05Z | 1 | 195096464 |
| 2025-05-26T20:39:46Z | 1 | 195096465 |
| 2025-05-26T21:40:31Z | 1 | 195096466 |
| 2025-05-26T22:41:15Z | 1 | 195096467 |
| 2025-05-26T23:41:59Z | 1 | 195096468 |
| 2025-05-27T00:42:41Z | 1 | 195096469 |
| 2025-05-27T01:43:32Z | 1 | 195096470 |
| 2025-05-27T02:44:30Z | 1 | 195096471 |
| 2025-05-27T03:45:28Z | 1 | 195096472 |
| 2025-05-27T04:46:39Z | 1 | 195096473 |
| 2025-05-27T05:47:39Z | 1 | 195096474 |
| 2025-05-27T06:49:02Z | 1 | 195096475 |
| 2025-05-27T07:50:48Z | 1 | 195096476 |
| 2025-05-27T08:52:39Z | 1 | 195096477 |
| 2025-05-27T09:54:33Z | 1 | 195096478 |
| 2025-05-27T10:57:01Z | 1 | 195096479 |
| 2025-05-27T11:58:30Z | 1 | 195096480 |
| 2025-05-27T13:00:08Z | 1 | 195096481 |
| 2025-05-27T14:01:45Z | 1 | 195096482 |
| 2025-05-27T15:03:27Z | 1 | 195096483 |
| 2025-05-27T16:05:10Z | 1 | 195096484 |
| 2025-05-27T17:06:45Z | 1 | 195096485 |
| 2025-05-27T18:08:28Z | 1 | 195096486 |
| 2025-05-27T19:09:52Z | 1 | 195096487 |
| 2025-05-27T20:10:48Z | 1 | 195096488 |
| 2025-05-27T21:11:43Z | 1 | 195096489 |
| 2025-05-27T22:12:29Z | 1 | 195096490 |
| 2025-05-27T23:13:17Z | 1 | 195096491 |
| 2025-05-28T00:14:02Z | 1 | 195096492 |
| 2025-05-28T01:14:49Z | 1 | 195096493 |
| 2025-05-28T02:15:36Z | 1 | 195096494 |
| 2025-05-28T03:16:38Z | 1 | 195096495 |
| 2025-05-28T04:17:55Z | 1 | 195096496 |
| 2025-05-28T05:18:58Z | 1 | 195096497 |
| 2025-05-28T06:20:04Z | 1 | 195096498 |
| 2025-05-28T07:21:35Z | 1 | 195096499 |
| 2025-05-28T08:23:14Z | 1 | 195096500 |
| 2025-05-28T09:24:52Z | 1 | 195096501 |
| 2025-05-28T10:26:24Z | 1 | 195096502 |
| 2025-05-28T11:28:18Z | 1 | 195096503 |
| 2025-05-28T12:30:25Z | 1 | 195096504 |
| 2025-05-28T13:32:02Z | 1 | 195096505 |
| 2025-05-28T14:33:42Z | 1 | 195096506 |
| 2025-05-28T15:35:47Z | 1 | 195096507 |
| 2025-05-28T16:37:35Z | 1 | 195096508 |
| 2025-05-28T17:39:28Z | 1 | 195096509 |
| 2025-05-28T18:41:20Z | 1 | 195096510 |
| 2025-05-28T19:42:16Z | 1 | 195096511 |
| 2025-05-28T20:43:11Z | 1 | 195096512 |
| 2025-05-28T21:44:06Z | 1 | 195096513 |
| 2025-05-28T22:45:00Z | 1 | 195096514 |
| 2025-05-28T23:45:51Z | 1 | 195096515 |
| 2025-05-29T00:46:40Z | 1 | 195096516 |
| 2025-05-29T01:47:32Z | 1 | 195096517 |
| 2025-05-29T02:48:26Z | 1 | 195096518 |
| 2025-05-29T03:49:37Z | 1 | 195096519 |
| 2025-05-29T04:50:46Z | 1 | 195096520 |
| 2025-05-29T05:52:52Z | 1 | 195096521 |
| 2025-05-29T06:54:36Z | 1 | 195096522 |
| 2025-05-29T07:56:30Z | 1 | 195096523 |
| 2025-05-29T08:58:38Z | 1 | 195096524 |
| 2025-05-29T10:00:18Z | 1 | 195096525 |
| 2025-05-29T11:02:05Z | 1 | 195096526 |
| 2025-05-29T12:03:38Z | 1 | 195096527 |
| 2025-05-29T13:05:15Z | 1 | 195096528 |
| 2025-05-29T14:06:56Z | 1 | 195096529 |
| 2025-05-29T15:08:34Z | 1 | 195096530 |
| 2025-05-29T16:10:15Z | 1 | 195096531 |
| 2025-05-29T17:12:49Z | 1 | 195096532 |
| 2025-05-29T18:14:30Z | 1 | 195096533 |
| 2025-05-29T19:16:11Z | 1 | 195096534 |
| 2025-05-29T20:16:59Z | 1 | 195096535 |
| 2025-05-29T21:18:05Z | 1 | 195096536 |
| 2025-05-29T22:19:05Z | 1 | 195096537 |
| 2025-05-29T23:20:14Z | 1 | 195096538 |
| 2025-05-30T00:21:01Z | 1 | 195096539 |
| 2025-05-30T01:21:48Z | 1 | 195096540 |
| 2025-05-30T02:23:03Z | 1 | 195096541 |
| 2025-05-30T03:24:25Z | 1 | 195096542 |
| 2025-05-30T04:25:57Z | 1 | 195096543 |
| 2025-05-30T05:27:19Z | 1 | 195096544 |
| 2025-05-30T06:28:49Z | 1 | 195096545 |
| 2025-05-30T07:30:27Z | 1 | 195096546 |
| 2025-05-30T08:32:11Z | 1 | 195096547 |
| 2025-05-30T09:33:59Z | 1 | 195096548 |
| 2025-05-30T10:35:47Z | 1 | 195096549 |
| 2025-05-30T11:37:39Z | 1 | 195096550 |
| 2025-05-30T12:39:40Z | 1 | 195096551 |
| 2025-05-30T13:41:37Z | 1 | 195096552 |
| 2025-05-30T14:43:36Z | 1 | 195096553 |
| 2025-05-30T15:45:51Z | 1 | 195096554 |
| 2025-05-30T16:47:56Z | 1 | 195096555 |
| 2025-05-30T17:49:59Z | 1 | 195096556 |
| 2025-05-30T18:51:37Z | 1 | 195096557 |
| 2025-05-30T19:53:31Z | 1 | 195096558 |
| 2025-05-30T20:54:37Z | 1 | 195096559 |
| 2025-05-30T21:55:30Z | 1 | 195096560 |
| 2025-05-30T22:56:27Z | 1 | 195096561 |
| 2025-05-30T23:57:32Z | 1 | 195096562 |
| 2025-05-31T00:58:17Z | 1 | 195096563 |
| 2025-05-31T01:59:13Z | 1 | 195096564 |
| 2025-05-31T03:00:36Z | 1 | 195096565 |
| 2025-05-31T04:02:28Z | 1 | 195096566 |
| 2025-05-31T05:03:57Z | 1 | 195096567 |
| 2025-05-31T06:05:38Z | 1 | 195096568 |
| 2025-05-31T07:07:26Z | 1 | 195096569 |
| 2025-05-31T08:09:13Z | 1 | 195096570 |
| 2025-05-31T09:10:49Z | 1 | 195096571 |
| 2025-05-31T10:12:31Z | 1 | 195096572 |
| 2025-05-31T11:14:18Z | 1 | 195096573 |
| 2025-05-31T12:16:08Z | 1 | 195096574 |
| 2025-05-31T13:17:40Z | 1 | 195096575 |
| 2025-05-31T14:19:30Z | 1 | 195096576 |
| 2025-05-31T15:21:33Z | 1 | 195096577 |
| 2025-05-31T16:23:19Z | 1 | 195096578 |
| 2025-05-31T17:25:34Z | 1 | 195096579 |
| 2025-05-31T18:27:34Z | 1 | 195096580 |
| 2025-05-31T19:29:32Z | 1 | 195096581 |
| 2025-05-31T20:31:07Z | 1 | 195096582 |
| 2025-05-31T21:31:55Z | 1 | 195096583 |
| 2025-05-31T22:32:43Z | 1 | 195096584 |
| 2025-05-31T23:33:34Z | 1 | 195096585 |
| 2025-06-01T00:34:24Z | 1 | 195096586 |
| 2025-06-01T01:35:23Z | 1 | 195096587 |
| 2025-06-01T02:36:25Z | 1 | 195096588 |
| 2025-06-01T03:37:34Z | 1 | 195096589 |
| 2025-06-01T04:39:17Z | 1 | 195096590 |
| 2025-06-01T05:40:43Z | 1 | 195096591 |
| 2025-06-01T06:42:15Z | 1 | 195096592 |
| 2025-06-06T14:02:06Z | 1 | 195096593 |
| 2025-06-06T15:17:00Z | 1 | 195096594 |
| 2025-06-06T16:34:22Z | 1 | 195096595 |
| 2025-06-06T17:35:50Z | 1 | 195096596 |
| 2025-06-06T18:37:19Z | 1 | 195096597 |
| 2025-06-06T19:38:57Z | 1 | 195096598 |
| 2025-06-06T20:40:29Z | 1 | 195096599 |
| 2025-06-06T21:41:52Z | 1 | 195096600 |
| 2025-06-06T22:43:34Z | 1 | 195096601 |
| 2025-06-06T23:45:14Z | 1 | 195096602 |
| 2025-06-07T00:46:41Z | 1 | 195096603 |
| 2025-06-07T01:48:02Z | 1 | 195096604 |
| 2025-06-07T02:49:22Z | 1 | 195096605 |
| 2025-06-07T03:50:44Z | 1 | 195096606 |
| 2025-06-07T04:51:59Z | 1 | 195096607 |
| 2025-06-07T05:53:17Z | 1 | 195096608 |
| 2025-06-07T06:54:34Z | 1 | 195096609 |
| 2025-06-07T07:55:50Z | 1 | 195096610 |
| 2025-06-07T08:57:05Z | 1 | 195096611 |
| 2025-06-07T09:58:19Z | 1 | 195096612 |
| 2025-06-07T10:59:29Z | 1 | 195096613 |
| 2025-06-07T12:01:04Z | 1 | 195096614 |
| 2025-06-07T13:02:30Z | 1 | 195096615 |
| 2025-06-07T14:03:48Z | 1 | 195096616 |
| 2025-06-07T15:05:10Z | 1 | 195096617 |
| 2025-06-07T16:06:44Z | 1 | 195096618 |
| 2025-06-07T17:08:07Z | 1 | 195096619 |
| 2025-06-07T18:09:38Z | 1 | 195096620 |
| 2025-06-07T19:11:11Z | 1 | 195096621 |
| 2025-06-07T20:12:51Z | 1 | 195096622 |
| 2025-06-07T21:14:16Z | 1 | 195096623 |
| 2025-06-07T22:15:59Z | 1 | 195096624 |
| 2025-06-07T23:17:33Z | 1 | 195096625 |
| 2025-06-08T00:18:55Z | 1 | 195096626 |
| 2025-06-08T01:20:16Z | 1 | 195096627 |
| 2025-06-08T02:21:33Z | 1 | 195096628 |
| 2025-06-08T03:22:52Z | 1 | 195096629 |
| 2025-06-08T04:24:15Z | 1 | 195096630 |
| 2025-06-08T05:25:40Z | 1 | 195096631 |
| 2025-06-08T06:27:00Z | 1 | 195096632 |
| 2025-06-08T07:28:17Z | 1 | 195096633 |
| 2025-06-08T08:29:38Z | 1 | 195096634 |
| 2025-06-08T09:30:55Z | 1 | 195096635 |
|