Upload example.py with huggingface_hub
Browse files- example.py +80 -0
example.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datasets import load_dataset
|
2 |
+
|
3 |
+
|
4 |
+
def display_dataset_statistics(dataset):
|
5 |
+
"""
|
6 |
+
Display overall statistics about the dataset.
|
7 |
+
|
8 |
+
Args:
|
9 |
+
dataset: A HuggingFace Dataset object.
|
10 |
+
"""
|
11 |
+
print("\n" + "=" * 50)
|
12 |
+
print(f"{'DATASET STATISTICS':^50}")
|
13 |
+
print("=" * 50)
|
14 |
+
|
15 |
+
print(f"\n📊 Number of entries: {len(dataset):,}")
|
16 |
+
|
17 |
+
# Convert to pandas for easier analysis
|
18 |
+
df = dataset.to_pandas()
|
19 |
+
|
20 |
+
# Count presentation types
|
21 |
+
if "status" in df.columns:
|
22 |
+
print("\n" + "-" * 30)
|
23 |
+
print("📝 PRESENTATION TYPES")
|
24 |
+
print("-" * 30)
|
25 |
+
status_counts = df["status"].value_counts()
|
26 |
+
for status, count in status_counts.items():
|
27 |
+
print(f" • {status}: {count:,} ({count / len(df) * 100:.1f}%)")
|
28 |
+
|
29 |
+
# Count venues
|
30 |
+
if "venue" in df.columns:
|
31 |
+
print("\n" + "-" * 30)
|
32 |
+
print("🏢 VENUES")
|
33 |
+
print("-" * 30)
|
34 |
+
venue_counts = df["venue"].value_counts()
|
35 |
+
for venue, count in venue_counts.items():
|
36 |
+
print(f" • {venue}: {count:,} ({count / len(df) * 100:.1f}%)")
|
37 |
+
|
38 |
+
# Count primary research areas
|
39 |
+
if "primary_area" in df.columns:
|
40 |
+
print("\n" + "-" * 30)
|
41 |
+
print("🔬 TOP 10 PRIMARY RESEARCH AREAS")
|
42 |
+
print("-" * 30)
|
43 |
+
area_counts = df["primary_area"].value_counts().head(10)
|
44 |
+
for area, count in area_counts.items():
|
45 |
+
print(f" • {area}: {count:,} ({count / len(df) * 100:.1f}%)")
|
46 |
+
|
47 |
+
|
48 |
+
def display_sample_entries(dataset, n=3):
|
49 |
+
"""
|
50 |
+
Display sample entries from the dataset.
|
51 |
+
|
52 |
+
Args:
|
53 |
+
dataset: A HuggingFace Dataset object.
|
54 |
+
n: Number of samples to display.
|
55 |
+
"""
|
56 |
+
print("\n" + "=" * 50)
|
57 |
+
print(f"{'SAMPLE ENTRIES':^50}")
|
58 |
+
print("=" * 50)
|
59 |
+
|
60 |
+
for i in range(min(n, len(dataset))):
|
61 |
+
print(f"\n📄 SAMPLE {i + 1}")
|
62 |
+
print("-" * 30)
|
63 |
+
print(f"🎬 Video file: video/{dataset[i].get('video_file', 'N/A')}")
|
64 |
+
print(f"📝 Title: {dataset[i].get('title', 'N/A')}")
|
65 |
+
print(f"💡 TL;DR: {dataset[i].get('tldr', 'N/A')}")
|
66 |
+
print(f"🔬 Primary area: {dataset[i].get('primary_area', 'N/A')}")
|
67 |
+
print(f"🏷️ Keywords: {dataset[i].get('keywords', 'N/A')}")
|
68 |
+
print("=" * 50)
|
69 |
+
|
70 |
+
|
71 |
+
if __name__ == "__main__":
|
72 |
+
# Load the dataset
|
73 |
+
dataset = load_dataset("vivianchen98/LearningPaper24", data_files="metadata/catalog.jsonl", split="train")
|
74 |
+
print(f"Successfully loaded LearningPaper24 dataset with {len(dataset)} entries.")
|
75 |
+
|
76 |
+
# Display statistics
|
77 |
+
display_dataset_statistics(dataset)
|
78 |
+
|
79 |
+
# Display sample entries
|
80 |
+
display_sample_entries(dataset)
|