Update README.md
Browse files
README.md
CHANGED
@@ -6,4 +6,47 @@ This repository contains the datasets that are meant to be used with VIBE (Vecto
|
|
6 |
|
7 |
https://github.com/vector-index-bench/vibe
|
8 |
|
9 |
-
The datasets can be downloaded manually from this repository, but the benchmark framework also downloads them automatically.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
https://github.com/vector-index-bench/vibe
|
8 |
|
9 |
+
The datasets can be downloaded manually from this repository, but the benchmark framework also downloads them automatically.
|
10 |
+
|
11 |
+
## Datasets
|
12 |
+
|
13 |
+
| Name | Type | n | d | Distance |
|
14 |
+
|---|---|---|---|---|
|
15 |
+
| [agnews-mxbai-1024-euclidean](https://huggingface.co/datasets/vector-index-bench/vibe/blob/main/agnews-mxbai-1024-euclidean.hdf5) | Text | 769,382 | 1024 | euclidean |
|
16 |
+
| [arxiv-nomic-768-normalized](https://huggingface.co/datasets/vector-index-bench/vibe/blob/main/arxiv-nomic-768-normalized.hdf5) | Text | 1,344,643 | 768 | any |
|
17 |
+
| [gooaq-distilroberta-768-normalized](https://huggingface.co/datasets/vector-index-bench/vibe/blob/main/gooaq-distilroberta-768-normalized.hdf5) | Text | 1,475,024 | 768 | any |
|
18 |
+
| [imagenet-clip-512-normalized](https://huggingface.co/datasets/vector-index-bench/vibe/blob/main/imagenet-clip-512-normalized.hdf5) | Image | 1,281,167 | 512 | any |
|
19 |
+
| [landmark-nomic-768-normalized](https://huggingface.co/datasets/vector-index-bench/vibe/blob/main/landmark-nomic-768-normalized.hdf5) | Image | 760,757 | 768 | any |
|
20 |
+
| [yahoo-minilm-384-normalized](https://huggingface.co/datasets/vector-index-bench/vibe/blob/main/yahoo-minilm-384-normalized.hdf5) | Text | 677,305 | 384 | any |
|
21 |
+
| [celeba-resnet-2048-cosine](https://huggingface.co/datasets/vector-index-bench/vibe/blob/main/celeba-resnet-2048-cosine.hdf5) | Image | 201,599 | 2048 | cosine |
|
22 |
+
| [ccnews-nomic-768-normalized](https://huggingface.co/datasets/vector-index-bench/vibe/blob/main/ccnews-nomic-768-normalized.hdf5) | Text | 495,328 | 768 | any |
|
23 |
+
| [codesearchnet-jina-768-cosine](https://huggingface.co/datasets/vector-index-bench/vibe/blob/main/codesearchnet-jina-768-cosine.hdf5) | Code | 1,374,067 | 768 | cosine |
|
24 |
+
| [glove-200-cosine](https://huggingface.co/datasets/vector-index-bench/vibe/blob/main/glove-200-cosine.hdf5) | Word | 1,192,514 | 200 | cosine |
|
25 |
+
| [landmark-dino-768-cosine](https://huggingface.co/datasets/vector-index-bench/vibe/blob/main/landmark-dino-768-cosine.hdf5) | Image | 760,757 | 768 | cosine |
|
26 |
+
| [simplewiki-openai-3072-normalized](https://huggingface.co/datasets/vector-index-bench/vibe/blob/main/simplewiki-openai-3072-normalized.hdf5) | Text | 260,372 | 3072 | any |
|
27 |
+
| [coco-nomic-768-normalized](https://huggingface.co/datasets/vector-index-bench/vibe/blob/main/coco-nomic-768-normalized.hdf5) | Text-to-Image | 282,360 | 768 | any |
|
28 |
+
| [imagenet-align-640-normalized](https://huggingface.co/datasets/vector-index-bench/vibe/blob/main/imagenet-align-640-normalized.hdf5) | Text-to-Image | 1,281,167 | 640 | any |
|
29 |
+
| [laion-clip-512-normalized](https://huggingface.co/datasets/vector-index-bench/vibe/blob/main/laion-clip-512-normalized.hdf5) | Text-to-Image | 1,000,448 | 512 | any |
|
30 |
+
| [yandex-200-cosine](https://huggingface.co/datasets/vector-index-bench/vibe/blob/main/yandex-200-cosine.hdf5) | Text-to-Image | 1,000,000 | 200 | cosine |
|
31 |
+
| [yi-128-ip](https://huggingface.co/datasets/vector-index-bench/vibe/blob/main/yi-128-ip.hdf5) | Attention | 187,843 | 128 | IP |
|
32 |
+
| [llama-128-ip](https://huggingface.co/datasets/vector-index-bench/vibe/blob/main/llama-128-ip.hdf5) | Attention | 256,921 | 128 | IP |
|
33 |
+
|
34 |
+
## Dataset structure
|
35 |
+
|
36 |
+
Each dataset is distributed as an HDF5 file.
|
37 |
+
|
38 |
+
The HDF5 files contain the following attributes:
|
39 |
+
- dimension: The dimensionality of the data.
|
40 |
+
- distance: The distance metric to use.
|
41 |
+
- point_type: The precision of the vectors, one of "float", "uint8", or "binary".
|
42 |
+
|
43 |
+
The HDF5 files contain the following HDF5 datasets:
|
44 |
+
- train: numpy array of size (n_corpus, dim) containing the embeddings used to build the vector index
|
45 |
+
- test: numpy array of size (n_test, dim) containing the test query embeddings
|
46 |
+
- neighbors: numpy array of size (n_test, 100) containing the IDs of the true 100 k-nn of each test query
|
47 |
+
- distances: numpy array of size (n_test, 100) containing the distances of the true 100 k-nn of each test query
|
48 |
+
- avg_distances: numpy array of size n_test containing the average distance from each test query to the corpus points
|
49 |
+
|
50 |
+
Additionally, the HDF5 files of OOD datasets contain the following HDF5 datasets:
|
51 |
+
- learn: numpy array of size (n_learn, dim) containing a larger sample from the query distribution
|
52 |
+
- learn_neighbors: numpy array of size (n_learn, 100) containing the true 100 k-nn (from the corpus) for each point in learn
|