--- license: pddl task_categories: - translation language: - be - en size_categories: - n<1K --- ## Overview This is a small dataset of English-Belarusian sentence pairs sampled from the largest parallel corpora in [OPUS](https://opus.nlpl.eu/results/en&be/corpus-result-table) (100 random instances from each of the following: NLLB, HPLT, CCMatrix, CCAligned) and manually labeled for correctness by a speaker of Belarusian. The taxonomy of labels follows [Kreutzer et al. 2022](https://doi.org/10.1162/tacl_a_00447): - CC: correct translation, natural sentence - CB: correct translation, boilerplate or low quality - CS: correct translation, short - X: incorrect translation - WL: wrong language - NL: not a language Where appropriate, the labels are accompanied by free-form comments. ## Data sampling In Unix shell, execute: ```bash sample_sentence_pairs () { mkdir -p $1 cd $1 wget https://object.pouta.csc.fi/OPUS-$1/$2/moses/be-en.txt.zip unzip be-en.txt.zip paste $1.be-en.en $1.be-en.be | shuf -n 100 > $1.be-en.sample100.txt ls | grep -v sample100 | xargs rm cd .. } sample_sentence_pairs NLLB v1 sample_sentence_pairs HPLT v2 sample_sentence_pairs CCMatrix v1 sample_sentence_pairs CCAligned v1 mv */*.txt . rm -r NLLB HPLT CCMatrix CCAligned ``` Then in Python: ```python3 import csv def to_csv(filename): with open(filename) as f: data = [line.strip().split("\t") for line in f] assert all(len(x) == 2 for x in data) with open("processed_%s.csv" % filename, "w") as f: csv_writer = csv.writer(f) csv_writer.writerow(["en", "be"]) csv_writer.writerows(data) to_csv("NLLB.be-en.sample100.txt") to_csv("HPLT.be-en.sample100.txt") to_csv("CCMatrix.be-en.sample100.txt") to_csv("CCAligned.be-en.sample100.txt") ``` ## Labeling results | Dataset | CC | CB | CS | X | WL | NL | |-----------|----|----|----|----|----|----| | NLLB | 17 | | | 73 | 10 | | | HPLT | 41 | 35 | 6 | 17 | 1 | | | CCMatrix | 7 | 1 | | 92 | | | | CCAligned | 31 | 38 | 8 | 22 | 1 | |