import datasets import json import xml.etree.ElementTree as ET from datasets import BuilderConfig, DatasetInfo, DownloadManager, GeneratorBasedBuilder, Features, SplitGenerator, Value from typing import Any, Dict, Iterator, List, Tuple, Union class KakologArchivesConfig(BuilderConfig): def __init__(self, channel_id: Union[str, None] = None, year: Union[int, None] = None, number_of_files: Union[int, None] = None, **kwargs): super(KakologArchivesConfig, self).__init__(**kwargs) self.channel_id = channel_id self.year = year self.number_of_files = number_of_files class KakologArchivesDatasetBuilder(GeneratorBasedBuilder): VERSION = '1.0.0' BUILDER_CONFIGS = [ KakologArchivesConfig( name = 'all', version = VERSION, description = '全チャンネル/全期間のすべての過去ログコメントを取得します。180GB 近くあるため注意してください。', ), KakologArchivesConfig( name='sample', version = VERSION, description = 'サンプルとして、2022年中に投稿された TOKYO MX (実況チャンネル ID: jk9) のすべての過去ログコメントを取得します。1GB ほどあります。', channel_id = 'jk9', year = 2022, ), ] DEFAULT_CONFIG_NAME = "all" def _info(self) -> DatasetInfo: return DatasetInfo( description = 'ニコニコ実況のサービス開始から現在までのすべての過去ログコメントのデータセットです。', homepage = 'https://jikkyo.tsukumijima.net/', features = Features({ 'thread': Value('string'), 'no': Value('int64'), 'vpos': Value('int64'), 'date': Value('int64'), 'date_usec': Value('int64'), 'user_id': Value('string'), 'mail': Value('string', id=None), 'premium': Value('bool'), 'anonymity': Value('bool'), 'content': Value('string'), }), ) def _split_generators(self, dl_manager: DownloadManager) -> List[SplitGenerator]: def create_relative_paths(json_data: dict[str, Any], current_path: str = "") -> List[str]: relative_paths = [] for key, value in json_data.items(): new_path = f"{current_path}/{key}" if current_path else key if value is None: relative_paths.append(new_path) elif isinstance(value, dict): relative_paths.extend(create_relative_paths(value, new_path)) return relative_paths json_file = dl_manager.download('dataset_structure.json') with open(json_file, 'r', encoding='utf-8') as f: relative_paths = create_relative_paths(json.load(f)) if self.config.channel_id is not None: relative_paths = [path for path in relative_paths if f"{self.config.channel_id}/" in path] if self.config.year is not None: relative_paths = [path for path in relative_paths if f"/{self.config.year}/" in path] if self.config.number_of_files is not None: relative_paths = relative_paths[:min(self.config.number_of_files, len(relative_paths))] downloaded_files = dl_manager.download(relative_paths) return [SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"files": downloaded_files})] def _generate_examples(self, files: List[str]) -> Iterator[Tuple[int, Dict[str, Any]]]: for idx_parent, file in enumerate(files): with open(file, 'r', encoding='utf-8') as f: contents = '' + f.read() + '' root = ET.fromstring(contents) for idx, chat in enumerate(root.iter('chat')): if 'deleted' in chat.attrib: continue chat_attrib = { 'thread': chat.attrib.get('thread', 'unknown'), 'no': int(chat.attrib.get('no', 0)), 'vpos': int(chat.attrib.get('vpos', 0)), 'date': int(chat.attrib.get('date', 0)), 'date_usec': int(chat.attrib.get('date_usec', 0)), 'user_id': chat.attrib.get('user_id', 'unknown'), 'mail': chat.attrib.get('mail', None), 'premium': chat.attrib.get('premium', '0') == '1', 'anonymity': chat.attrib.get('anonymity', '0') == '1', } yield idx_parent * 1000000 + idx, {**chat_attrib, 'content': chat.text}