update readme
Browse files- .gitattributes +3 -74
- README.md +453 -34
.gitattributes
CHANGED
@@ -1,74 +1,3 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
*.bin filter=lfs diff=lfs merge=lfs -text
|
5 |
-
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
6 |
-
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
7 |
-
*.ftz filter=lfs diff=lfs merge=lfs -text
|
8 |
-
*.gz filter=lfs diff=lfs merge=lfs -text
|
9 |
-
*.h5 filter=lfs diff=lfs merge=lfs -text
|
10 |
-
*.joblib filter=lfs diff=lfs merge=lfs -text
|
11 |
-
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
12 |
-
*.lz4 filter=lfs diff=lfs merge=lfs -text
|
13 |
-
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
14 |
-
*.model filter=lfs diff=lfs merge=lfs -text
|
15 |
-
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
16 |
-
*.npy filter=lfs diff=lfs merge=lfs -text
|
17 |
-
*.npz filter=lfs diff=lfs merge=lfs -text
|
18 |
-
*.onnx filter=lfs diff=lfs merge=lfs -text
|
19 |
-
*.ot filter=lfs diff=lfs merge=lfs -text
|
20 |
-
*.parquet filter=lfs diff=lfs merge=lfs -text
|
21 |
-
*.pb filter=lfs diff=lfs merge=lfs -text
|
22 |
-
*.pickle filter=lfs diff=lfs merge=lfs -text
|
23 |
-
*.pkl filter=lfs diff=lfs merge=lfs -text
|
24 |
-
*.pt filter=lfs diff=lfs merge=lfs -text
|
25 |
-
*.pth filter=lfs diff=lfs merge=lfs -text
|
26 |
-
*.rar filter=lfs diff=lfs merge=lfs -text
|
27 |
-
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
28 |
-
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
29 |
-
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
30 |
-
*.tar filter=lfs diff=lfs merge=lfs -text
|
31 |
-
*.tflite filter=lfs diff=lfs merge=lfs -text
|
32 |
-
*.tgz filter=lfs diff=lfs merge=lfs -text
|
33 |
-
*.wasm filter=lfs diff=lfs merge=lfs -text
|
34 |
-
*.xz filter=lfs diff=lfs merge=lfs -text
|
35 |
-
*.zip filter=lfs diff=lfs merge=lfs -text
|
36 |
-
*.zst filter=lfs diff=lfs merge=lfs -text
|
37 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
38 |
-
# Audio files - uncompressed
|
39 |
-
*.pcm filter=lfs diff=lfs merge=lfs -text
|
40 |
-
*.sam filter=lfs diff=lfs merge=lfs -text
|
41 |
-
*.raw filter=lfs diff=lfs merge=lfs -text
|
42 |
-
# Audio files - compressed
|
43 |
-
*.aac filter=lfs diff=lfs merge=lfs -text
|
44 |
-
*.flac filter=lfs diff=lfs merge=lfs -text
|
45 |
-
*.mp3 filter=lfs diff=lfs merge=lfs -text
|
46 |
-
*.ogg filter=lfs diff=lfs merge=lfs -text
|
47 |
-
*.wav filter=lfs diff=lfs merge=lfs -text
|
48 |
-
# Image files - uncompressed
|
49 |
-
*.bmp filter=lfs diff=lfs merge=lfs -text
|
50 |
-
*.gif filter=lfs diff=lfs merge=lfs -text
|
51 |
-
*.png filter=lfs diff=lfs merge=lfs -text
|
52 |
-
*.tiff filter=lfs diff=lfs merge=lfs -text
|
53 |
-
*.tif filter=lfs diff=lfs merge=lfs -text
|
54 |
-
# Image files - compressed
|
55 |
-
*.jpg filter=lfs diff=lfs merge=lfs -text
|
56 |
-
*.jpeg filter=lfs diff=lfs merge=lfs -text
|
57 |
-
*.webp filter=lfs diff=lfs merge=lfs -text
|
58 |
-
# LiDAR files - compressed
|
59 |
-
*.copc.laz filter=lfs diff=lfs merge=lfs -text
|
60 |
-
*.laz filter=lfs diff=lfs merge=lfs -textdata/224/annotations/annotations_CH_train.json filter=lfs diff=lfs merge=lfs -text
|
61 |
-
data/224/annotations/annotations_NY_test.json filter=lfs diff=lfs merge=lfs -text
|
62 |
-
data/224/annotations/annotations_NY_train.json filter=lfs diff=lfs merge=lfs -text
|
63 |
-
data/224/annotations/annotations_NZ_test.json filter=lfs diff=lfs merge=lfs -text
|
64 |
-
data/224/annotations/annotations_NZ_train.json filter=lfs diff=lfs merge=lfs -text
|
65 |
-
data/224/annotations/annotations_all_test.json filter=lfs diff=lfs merge=lfs -text
|
66 |
-
data/224/annotations/annotations_all_train.json filter=lfs diff=lfs merge=lfs -text
|
67 |
-
data/224/annotations/annotations_ffl_CH_test.json filter=lfs diff=lfs merge=lfs -text
|
68 |
-
data/224/annotations/annotations_ffl_CH_train.json filter=lfs diff=lfs merge=lfs -text
|
69 |
-
data/224/annotations/annotations_ffl_NY_test.json filter=lfs diff=lfs merge=lfs -text
|
70 |
-
data/224/annotations/annotations_ffl_NY_train.json filter=lfs diff=lfs merge=lfs -text
|
71 |
-
data/224/annotations/annotations_ffl_NZ_test.json filter=lfs diff=lfs merge=lfs -text
|
72 |
-
data/224/annotations/annotations_ffl_NZ_train.json filter=lfs diff=lfs merge=lfs -text
|
73 |
-
data/224/annotations/annotations_ffl_all_test.json filter=lfs diff=lfs merge=lfs -text
|
74 |
-
data/224/annotations/annotations_ffl_all_train.json filter=lfs diff=lfs merge=lfs -text
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fd385f9fbd4309426bc1ee75378875aa4ec9be603de9f2b9f8908c4e8acaec6a
|
3 |
+
size 2566
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
README.md
CHANGED
@@ -21,11 +21,8 @@ tags:
|
|
21 |
language:
|
22 |
- en
|
23 |
---
|
24 |
-
|
25 |
<div align="center">
|
26 |
<h1 align="center">The P<sup>3</sup> dataset: Pixels, Points and Polygons <br> for Multimodal Building Vectorization</h1>
|
27 |
-
<!-- <h3 align="center">Arxiv</h3> -->
|
28 |
-
<!-- <h3 align="center"><a href="https://raphaelsulzer.de/">Raphael Sulzer<sup>1,2</sup></a><br></h3> -->
|
29 |
<h3><align="center">Raphael Sulzer<sup>1,2</sup> Liuyun Duan<sup>1</sup>
|
30 |
Nicolas Girard<sup>1</sup> Florent Lafarge<sup>2</sup></a></h3>
|
31 |
<align="center"><sup>1</sup>LuxCarta Technology <br> <sup>2</sup>Centre Inria d'UniversitΓ© CΓ΄te d'Azur
|
@@ -33,36 +30,433 @@ language:
|
|
33 |
<b>Figure 1</b>: A view of our dataset of Zurich, Switzerland
|
34 |
</div>
|
35 |
|
36 |
-
## Abstract
|
37 |
|
38 |
<div align="justify">
|
39 |
-
We present the P<sup>3</sup> dataset, a large-scale multimodal benchmark for building vectorization, constructed from aerial LiDAR point clouds, high-resolution aerial imagery, and vectorized 2D building outlines, collected across three continents. The dataset contains over 10 billion LiDAR points with decimeter-level accuracy and RGB images at a ground sampling distance of 25 cm. While many existing datasets primarily focus on the image modality, P<sup>3</sup> offers a complementary perspective by also incorporating dense 3D information. We demonstrate that LiDAR point clouds serve as a robust modality for predicting building polygons, both in hybrid and end-to-end learning frameworks. Moreover, fusing aerial LiDAR and imagery further improves accuracy and geometric quality of predicted polygons. The P<sup>3</sup> dataset is publicly available, along with code and pretrained weights of three state-of-the-art models for building polygon prediction at
|
40 |
</div>
|
41 |
|
42 |
## Highlights
|
43 |
|
44 |
-
- A global, multimodal dataset of aerial images, aerial
|
45 |
-
- A library for training and evaluating state-of-the-art deep learning methods on the dataset
|
|
|
46 |
|
47 |
|
48 |
## Dataset
|
49 |
|
50 |
-
### Download
|
51 |
-
|
52 |
-
You can download the dataset at [huggingface.co/datasets/rsi/PixelsPointsPolygons](https://huggingface.co/datasets/rsi/PixelsPointsPolygons) .
|
53 |
-
|
54 |
-
|
55 |
### Overview
|
56 |
|
57 |
<div align="left">
|
58 |
<img src="./worldmap.jpg" width=60% height=50%>
|
59 |
</div>
|
60 |
|
|
|
61 |
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
-
|
|
|
|
|
|
|
|
|
65 |
|
|
|
|
|
|
|
|
|
66 |
|
67 |
## Code
|
68 |
|
@@ -72,9 +466,9 @@ See [datasets preprocessing](data_preprocess) for instructions on preparing a da
|
|
72 |
git clone https://github.com/raphaelsulzer/PixelsPointsPolygons
|
73 |
```
|
74 |
|
75 |
-
###
|
76 |
|
77 |
-
To create a conda environment named `
|
78 |
```
|
79 |
bash install.sh
|
80 |
```
|
@@ -103,50 +497,75 @@ pip install .
|
|
103 |
| Pix2Poly |\<pix2poly>| PointPillars (PP) + ViT | \<pp_vit> | | β
| 0.80 | 0.88 |
|
104 |
| Pix2Poly |\<pix2poly>| PP+ViT \& ViT | \<fusion_vit> | β
|β
| 0.78 | 0.85 | -->
|
105 |
|
106 |
-
###
|
|
|
|
|
|
|
|
|
107 |
|
108 |
-
|
109 |
-
To view all available options run
|
110 |
```
|
111 |
-
python train.py --help
|
112 |
```
|
113 |
|
114 |
-
### Training
|
115 |
|
116 |
-
Start training with the following command:
|
117 |
|
118 |
-
|
119 |
-
|
|
|
120 |
|
|
|
|
|
|
|
|
|
|
|
121 |
```
|
122 |
|
123 |
-
|
124 |
|
125 |
-
|
126 |
-
|
|
|
127 |
|
128 |
```
|
|
|
|
|
|
|
|
|
129 |
|
130 |
-
|
131 |
|
132 |
```
|
133 |
-
python
|
|
|
|
|
134 |
```
|
135 |
-
<!-- ## Trained models
|
136 |
|
137 |
-
|
138 |
|
|
|
139 |
|
140 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
|
142 |
-
|
143 |
|
|
|
|
|
|
|
|
|
144 |
|
145 |
## Citation
|
146 |
|
147 |
If you find our work useful, please consider citing:
|
148 |
```bibtex
|
149 |
-
|
150 |
```
|
151 |
|
152 |
## Acknowledgements
|
|
|
21 |
language:
|
22 |
- en
|
23 |
---
|
|
|
24 |
<div align="center">
|
25 |
<h1 align="center">The P<sup>3</sup> dataset: Pixels, Points and Polygons <br> for Multimodal Building Vectorization</h1>
|
|
|
|
|
26 |
<h3><align="center">Raphael Sulzer<sup>1,2</sup> Liuyun Duan<sup>1</sup>
|
27 |
Nicolas Girard<sup>1</sup> Florent Lafarge<sup>2</sup></a></h3>
|
28 |
<align="center"><sup>1</sup>LuxCarta Technology <br> <sup>2</sup>Centre Inria d'UniversitΓ© CΓ΄te d'Azur
|
|
|
30 |
<b>Figure 1</b>: A view of our dataset of Zurich, Switzerland
|
31 |
</div>
|
32 |
|
33 |
+
## Abstract
|
34 |
|
35 |
<div align="justify">
|
36 |
+
We present the P<sup>3</sup> dataset, a large-scale multimodal benchmark for building vectorization, constructed from aerial LiDAR point clouds, high-resolution aerial imagery, and vectorized 2D building outlines, collected across three continents. The dataset contains over 10 billion LiDAR points with decimeter-level accuracy and RGB images at a ground sampling distance of 25 cm. While many existing datasets primarily focus on the image modality, P<sup>3</sup> offers a complementary perspective by also incorporating dense 3D information. We demonstrate that LiDAR point clouds serve as a robust modality for predicting building polygons, both in hybrid and end-to-end learning frameworks. Moreover, fusing aerial LiDAR and imagery further improves accuracy and geometric quality of predicted polygons. The P<sup>3</sup> dataset is publicly available, along with code and pretrained weights of three state-of-the-art models for building polygon prediction at https://github.com/raphaelsulzer/PixelsPointsPolygons.
|
37 |
</div>
|
38 |
|
39 |
## Highlights
|
40 |
|
41 |
+
- A global, multimodal dataset of aerial images, aerial LiDAR point clouds and building outline polygons, available at [huggingface.co/datasets/rsi/PixelsPointsPolygons](https://huggingface.co/datasets/rsi/PixelsPointsPolygons)
|
42 |
+
- A library for training and evaluating state-of-the-art deep learning methods on the dataset, available at [github.com/raphaelsulzer/PixelsPointsPolygons](https://github.com/raphaelsulzer/PixelsPointsPolygons)
|
43 |
+
- Pretrained model weights, available at [huggingface.co/rsi/PixelsPointsPolygons](https://huggingface.co/rsi/PixelsPointsPolygons)
|
44 |
|
45 |
|
46 |
## Dataset
|
47 |
|
|
|
|
|
|
|
|
|
|
|
48 |
### Overview
|
49 |
|
50 |
<div align="left">
|
51 |
<img src="./worldmap.jpg" width=60% height=50%>
|
52 |
</div>
|
53 |
|
54 |
+
### Download
|
55 |
|
56 |
+
```
|
57 |
+
git lfs install
|
58 |
+
git clone https://huggingface.co/datasets/rsi/PixelsPointsPolygons $DATA_ROOT
|
59 |
+
```
|
60 |
+
|
61 |
+
### Structure
|
62 |
+
|
63 |
+
<details>
|
64 |
+
<summary>π Click to expand folder structure</summary -->
|
65 |
+
|
66 |
+
```text
|
67 |
+
PixelsPointsPolygons/data/224
|
68 |
+
βββ annotations
|
69 |
+
β βββ annotations_all_test.json
|
70 |
+
β βββ annotations_all_train.json
|
71 |
+
β βββ annotations_all_val.json
|
72 |
+
β ... (24 files total)
|
73 |
+
βββ images
|
74 |
+
β βββ train
|
75 |
+
β β βββ CH
|
76 |
+
β β β βββ 0
|
77 |
+
β β β β βββ image0_CH_train.tif
|
78 |
+
β β β β βββ image1000_CH_train.tif
|
79 |
+
β β β β βββ image1001_CH_train.tif
|
80 |
+
β β β β ... (5000 files total)
|
81 |
+
β β β βββ 5000
|
82 |
+
β β β β βββ image5000_CH_train.tif
|
83 |
+
β β β β βββ image5001_CH_train.tif
|
84 |
+
β β β β βββ image5002_CH_train.tif
|
85 |
+
β β β β ... (5000 files total)
|
86 |
+
β β β βββ 10000
|
87 |
+
β β β οΏ½οΏ½οΏ½ββ image10000_CH_train.tif
|
88 |
+
β β β βββ image10001_CH_train.tif
|
89 |
+
β β β βββ image10002_CH_train.tif
|
90 |
+
β β β ... (5000 files total)
|
91 |
+
β β β ... (11 dirs total)
|
92 |
+
β β βββ NY
|
93 |
+
β β β βββ 0
|
94 |
+
β β β β βββ image0_NY_train.tif
|
95 |
+
β β β β βββ image1000_NY_train.tif
|
96 |
+
β β β β βββ image1001_NY_train.tif
|
97 |
+
β β β β ... (5000 files total)
|
98 |
+
β β β βββ 5000
|
99 |
+
β β β β βββ image5000_NY_train.tif
|
100 |
+
β β β β βββ image5001_NY_train.tif
|
101 |
+
β β β β βββ image5002_NY_train.tif
|
102 |
+
β β β β ... (5000 files total)
|
103 |
+
β β β βββ 10000
|
104 |
+
β β β βββ image10000_NY_train.tif
|
105 |
+
β β β βββ image10001_NY_train.tif
|
106 |
+
β β β βββ image10002_NY_train.tif
|
107 |
+
β β β ... (5000 files total)
|
108 |
+
β β β ... (11 dirs total)
|
109 |
+
β β βββ NZ
|
110 |
+
β β βββ 0
|
111 |
+
β β β βββ image0_NZ_train.tif
|
112 |
+
β β β βββ image1000_NZ_train.tif
|
113 |
+
β β β βββ image1001_NZ_train.tif
|
114 |
+
β β β ... (5000 files total)
|
115 |
+
β β βββ 5000
|
116 |
+
β β β βββ image5000_NZ_train.tif
|
117 |
+
β β β βββ image5001_NZ_train.tif
|
118 |
+
β β β βββ image5002_NZ_train.tif
|
119 |
+
β β β ... (5000 files total)
|
120 |
+
β β βββ 10000
|
121 |
+
β β βββ image10000_NZ_train.tif
|
122 |
+
β β βββ image10001_NZ_train.tif
|
123 |
+
β β βββ image10002_NZ_train.tif
|
124 |
+
β β ... (5000 files total)
|
125 |
+
β β ... (11 dirs total)
|
126 |
+
β βββ val
|
127 |
+
β β βββ CH
|
128 |
+
β β β βββ 0
|
129 |
+
β β β βββ image0_CH_val.tif
|
130 |
+
β β β βββ image100_CH_val.tif
|
131 |
+
β β β βββ image101_CH_val.tif
|
132 |
+
β β β ... (529 files total)
|
133 |
+
β β βββ NY
|
134 |
+
β β β βββ 0
|
135 |
+
β β β βββ image0_NY_val.tif
|
136 |
+
β β β βββ image100_NY_val.tif
|
137 |
+
β β β βββ image101_NY_val.tif
|
138 |
+
β β β ... (529 files total)
|
139 |
+
β β βββ NZ
|
140 |
+
β β βββ 0
|
141 |
+
β β βββ image0_NZ_val.tif
|
142 |
+
β β βββ image100_NZ_val.tif
|
143 |
+
β β βββ image101_NZ_val.tif
|
144 |
+
β β ... (529 files total)
|
145 |
+
β βββ test
|
146 |
+
β βββ CH
|
147 |
+
β β βββ 0
|
148 |
+
β β β βββ image0_CH_test.tif
|
149 |
+
β β β βββ image1000_CH_test.tif
|
150 |
+
β β β βββ image1001_CH_test.tif
|
151 |
+
β β β ... (5000 files total)
|
152 |
+
β β βββ 5000
|
153 |
+
β β β βββ image5000_CH_test.tif
|
154 |
+
β β β βββ image5001_CH_test.tif
|
155 |
+
β β β βββ image5002_CH_test.tif
|
156 |
+
β β β ... (5000 files total)
|
157 |
+
β β βββ 10000
|
158 |
+
β β βββ image10000_CH_test.tif
|
159 |
+
β β βββ image10001_CH_test.tif
|
160 |
+
β β βββ image10002_CH_test.tif
|
161 |
+
β β ... (4400 files total)
|
162 |
+
β βββ NY
|
163 |
+
β β βββ 0
|
164 |
+
β β β βββ image0_NY_test.tif
|
165 |
+
β β β βββ image1000_NY_test.tif
|
166 |
+
β β β βββ image1001_NY_test.tif
|
167 |
+
β β β ... (5000 files total)
|
168 |
+
β β βββ 5000
|
169 |
+
β β β βββ image5000_NY_test.tif
|
170 |
+
β β β βββ image5001_NY_test.tif
|
171 |
+
β β β βββ image5002_NY_test.tif
|
172 |
+
β β β ... (5000 files total)
|
173 |
+
β β βββ 10000
|
174 |
+
β β βββ image10000_NY_test.tif
|
175 |
+
β β βββ image10001_NY_test.tif
|
176 |
+
β β βββ image10002_NY_test.tif
|
177 |
+
β β ... (4400 files total)
|
178 |
+
β βββ NZ
|
179 |
+
β βββ 0
|
180 |
+
β β βββ image0_NZ_test.tif
|
181 |
+
β β βββ image1000_NZ_test.tif
|
182 |
+
β β βββ image1001_NZ_test.tif
|
183 |
+
β β ... (5000 files total)
|
184 |
+
β βββ 5000
|
185 |
+
β β βββ image5000_NZ_test.tif
|
186 |
+
β β βββ image5001_NZ_test.tif
|
187 |
+
β β βββ image5002_NZ_test.tif
|
188 |
+
β β ... (5000 files total)
|
189 |
+
β βββ 10000
|
190 |
+
β βββ image10000_NZ_test.tif
|
191 |
+
β βββ image10001_NZ_test.tif
|
192 |
+
β βββ image10002_NZ_test.tif
|
193 |
+
β ... (4400 files total)
|
194 |
+
βββ lidar
|
195 |
+
β βββ train
|
196 |
+
β β βββ CH
|
197 |
+
β β β βββ 0
|
198 |
+
β β β β βββ lidar0_CH_train.copc.laz
|
199 |
+
β β β οΏ½οΏ½οΏ½ βββ lidar1000_CH_train.copc.laz
|
200 |
+
β β β β βββ lidar1001_CH_train.copc.laz
|
201 |
+
β β β β ... (5000 files total)
|
202 |
+
β β β βββ 5000
|
203 |
+
β β β β βββ lidar5000_CH_train.copc.laz
|
204 |
+
β β β β βββ lidar5001_CH_train.copc.laz
|
205 |
+
β β β β βββ lidar5002_CH_train.copc.laz
|
206 |
+
β β β β ... (5000 files total)
|
207 |
+
β β β βββ 10000
|
208 |
+
β β β βββ lidar10000_CH_train.copc.laz
|
209 |
+
β β β βββ lidar10001_CH_train.copc.laz
|
210 |
+
β β β βββ lidar10002_CH_train.copc.laz
|
211 |
+
β β β ... (5000 files total)
|
212 |
+
β β β ... (11 dirs total)
|
213 |
+
β β βββ NY
|
214 |
+
β β β βββ 0
|
215 |
+
β β β β βββ lidar0_NY_train.copc.laz
|
216 |
+
β β β β βββ lidar10_NY_train.copc.laz
|
217 |
+
β β β β βββ lidar1150_NY_train.copc.laz
|
218 |
+
β β β β ... (1071 files total)
|
219 |
+
β β β βββ 5000
|
220 |
+
β β β β βββ lidar5060_NY_train.copc.laz
|
221 |
+
β β β β βββ lidar5061_NY_train.copc.laz
|
222 |
+
β β β β βββ lidar5062_NY_train.copc.laz
|
223 |
+
β β β β ... (2235 files total)
|
224 |
+
β β β βββ 10000
|
225 |
+
β β β βββ lidar10000_NY_train.copc.laz
|
226 |
+
β β β βββ lidar10001_NY_train.copc.laz
|
227 |
+
β β β βββ lidar10002_NY_train.copc.laz
|
228 |
+
β β β ... (4552 files total)
|
229 |
+
β β β ... (11 dirs total)
|
230 |
+
β β βββ NZ
|
231 |
+
β β βββ 0
|
232 |
+
β β β βββ lidar0_NZ_train.copc.laz
|
233 |
+
β β β βββ lidar1000_NZ_train.copc.laz
|
234 |
+
β β β βββ lidar1001_NZ_train.copc.laz
|
235 |
+
β β β ... (5000 files total)
|
236 |
+
β β βββ 5000
|
237 |
+
β β β βββ lidar5000_NZ_train.copc.laz
|
238 |
+
β β β βββ lidar5001_NZ_train.copc.laz
|
239 |
+
β β β βββ lidar5002_NZ_train.copc.laz
|
240 |
+
β β β ... (5000 files total)
|
241 |
+
β β βββ 10000
|
242 |
+
β β βββ lidar10000_NZ_train.copc.laz
|
243 |
+
β β βββ lidar10001_NZ_train.copc.laz
|
244 |
+
β β βββ lidar10002_NZ_train.copc.laz
|
245 |
+
β β ... (4999 files total)
|
246 |
+
β β ... (11 dirs total)
|
247 |
+
β βββ val
|
248 |
+
β β βββ CH
|
249 |
+
β β β βββ 0
|
250 |
+
β β β βββ lidar0_CH_val.copc.laz
|
251 |
+
β β β βββ lidar100_CH_val.copc.laz
|
252 |
+
β β β βββ lidar101_CH_val.copc.laz
|
253 |
+
β β β ... (529 files total)
|
254 |
+
β β βββ NY
|
255 |
+
β β β βββ 0
|
256 |
+
β β β βββ lidar0_NY_val.copc.laz
|
257 |
+
β β β βββ lidar100_NY_val.copc.laz
|
258 |
+
β β β βββ lidar101_NY_val.copc.laz
|
259 |
+
β β β ... (529 files total)
|
260 |
+
β β βββ NZ
|
261 |
+
β β βββ 0
|
262 |
+
β β βββ lidar0_NZ_val.copc.laz
|
263 |
+
β β βββ lidar100_NZ_val.copc.laz
|
264 |
+
β β βββ lidar101_NZ_val.copc.laz
|
265 |
+
β β ... (529 files total)
|
266 |
+
β βββ test
|
267 |
+
β βββ CH
|
268 |
+
β β βββ 0
|
269 |
+
β β β βββ lidar0_CH_test.copc.laz
|
270 |
+
β β β βββ lidar1000_CH_test.copc.laz
|
271 |
+
β β β βββ lidar1001_CH_test.copc.laz
|
272 |
+
β β β ... (5000 files total)
|
273 |
+
β β βββ 5000
|
274 |
+
β β β βββ lidar5000_CH_test.copc.laz
|
275 |
+
β β β βββ lidar5001_CH_test.copc.laz
|
276 |
+
β β β βββ lidar5002_CH_test.copc.laz
|
277 |
+
β β β ... (5000 files total)
|
278 |
+
β β βββ 10000
|
279 |
+
β β βββ lidar10000_CH_test.copc.laz
|
280 |
+
β β βββ lidar10001_CH_test.copc.laz
|
281 |
+
β β βββ lidar10002_CH_test.copc.laz
|
282 |
+
β β ... (4400 files total)
|
283 |
+
β βββ NY
|
284 |
+
β β βββ 0
|
285 |
+
β β β βββ lidar0_NY_test.copc.laz
|
286 |
+
β β β βββ lidar1000_NY_test.copc.laz
|
287 |
+
β β β βββ lidar1001_NY_test.copc.laz
|
288 |
+
β β β ... (4964 files total)
|
289 |
+
β β βββ 5000
|
290 |
+
β β β βββ lidar5000_NY_test.copc.laz
|
291 |
+
β β β βββ lidar5001_NY_test.copc.laz
|
292 |
+
β β β βββ lidar5002_NY_test.copc.laz
|
293 |
+
β β β ... (4953 files total)
|
294 |
+
β β βββ 10000
|
295 |
+
β β βββ lidar10000_NY_test.copc.laz
|
296 |
+
β β βββ lidar10001_NY_test.copc.laz
|
297 |
+
β β βββ lidar10002_NY_test.copc.laz
|
298 |
+
β β ... (4396 files total)
|
299 |
+
β βββ NZ
|
300 |
+
β βββ 0
|
301 |
+
β β βββ lidar0_NZ_test.copc.laz
|
302 |
+
β β βββ lidar1000_NZ_test.copc.laz
|
303 |
+
β β βββ lidar1001_NZ_test.copc.laz
|
304 |
+
β β ... (5000 files total)
|
305 |
+
β βββ 5000
|
306 |
+
β β βββ lidar5000_NZ_test.copc.laz
|
307 |
+
β β βββ lidar5001_NZ_test.copc.laz
|
308 |
+
β β βββ lidar5002_NZ_test.copc.laz
|
309 |
+
β β ... (5000 files total)
|
310 |
+
β βββ 10000
|
311 |
+
β βββ lidar10000_NZ_test.copc.laz
|
312 |
+
β βββ lidar10001_NZ_test.copc.laz
|
313 |
+
β βββ lidar10002_NZ_test.copc.laz
|
314 |
+
β ... (4400 files total)
|
315 |
+
βββ ffl
|
316 |
+
βββ train
|
317 |
+
β βββ CH
|
318 |
+
β β βββ 0
|
319 |
+
β β β βββ image0_CH_train.pt
|
320 |
+
β β β βββ image1000_CH_train.pt
|
321 |
+
β β β βββ image1001_CH_train.pt
|
322 |
+
β β β ... (5000 files total)
|
323 |
+
β β βββ 5000
|
324 |
+
β β β βββ image5000_CH_train.pt
|
325 |
+
β β β βββ image5001_CH_train.pt
|
326 |
+
β β β βββ image5002_CH_train.pt
|
327 |
+
β β β ... (5000 files total)
|
328 |
+
β β βββ 10000
|
329 |
+
β β βββ image10000_CH_train.pt
|
330 |
+
β β βββ image10001_CH_train.pt
|
331 |
+
β β βββ image10002_CH_train.pt
|
332 |
+
β β ... (5000 files total)
|
333 |
+
β β ... (11 dirs total)
|
334 |
+
β βββ NY
|
335 |
+
β β βββ 0
|
336 |
+
β β β βββ image0_NY_train.pt
|
337 |
+
β β β βββ image1000_NY_train.pt
|
338 |
+
β β β βββ image1001_NY_train.pt
|
339 |
+
β β β ... (5000 files total)
|
340 |
+
β β βββ 5000
|
341 |
+
β β β βββ image5000_NY_train.pt
|
342 |
+
β β β βββ image5001_NY_train.pt
|
343 |
+
β β β βββ image5002_NY_train.pt
|
344 |
+
β β β ... (5000 files total)
|
345 |
+
β β βββ 10000
|
346 |
+
β β βββ image10000_NY_train.pt
|
347 |
+
β β βββ image10001_NY_train.pt
|
348 |
+
β β βββ image10002_NY_train.pt
|
349 |
+
β β ... (5000 files total)
|
350 |
+
β β ... (11 dirs total)
|
351 |
+
β βββ NZ
|
352 |
+
β β βββ 0
|
353 |
+
β β β βββ image0_NZ_train.pt
|
354 |
+
β β β βββ image1000_NZ_train.pt
|
355 |
+
β β β βββ image1001_NZ_train.pt
|
356 |
+
β β β ... (5000 files total)
|
357 |
+
β β βββ 5000
|
358 |
+
β β β βββ image5000_NZ_train.pt
|
359 |
+
β β β βββ image5001_NZ_train.pt
|
360 |
+
β β β βββ image5002_NZ_train.pt
|
361 |
+
β β β ... (5000 files total)
|
362 |
+
β β βββ 10000
|
363 |
+
β β βββ image10000_NZ_train.pt
|
364 |
+
β β βββ image10001_NZ_train.pt
|
365 |
+
β β βββ image10002_NZ_train.pt
|
366 |
+
β β ... (5000 files total)
|
367 |
+
β β ... (11 dirs total)
|
368 |
+
β βββ processed-flag-all
|
369 |
+
β βββ processed-flag-CH
|
370 |
+
β βββ processed-flag-NY
|
371 |
+
β ... (8 files total)
|
372 |
+
βββ val
|
373 |
+
β βββ CH
|
374 |
+
β β βββ 0
|
375 |
+
β β βββ image0_CH_val.pt
|
376 |
+
β β βββ image100_CH_val.pt
|
377 |
+
β β βββ image101_CH_val.pt
|
378 |
+
β β ... (529 files total)
|
379 |
+
β βββ NY
|
380 |
+
β β βββ 0
|
381 |
+
β β βββ image0_NY_val.pt
|
382 |
+
β β βββ image100_NY_val.pt
|
383 |
+
β β βββ image101_NY_val.pt
|
384 |
+
β β ... (529 files total)
|
385 |
+
β βββ NZ
|
386 |
+
β β βββ 0
|
387 |
+
β β βββ image0_NZ_val.pt
|
388 |
+
β β βββ image100_NZ_val.pt
|
389 |
+
β β βββ image101_NZ_val.pt
|
390 |
+
β β ... (529 files total)
|
391 |
+
β βββ processed-flag-all
|
392 |
+
β βββ processed-flag-CH
|
393 |
+
β βββ processed-flag-NY
|
394 |
+
β ... (8 files total)
|
395 |
+
βββ test
|
396 |
+
βββ CH
|
397 |
+
β βββ 0
|
398 |
+
β β βββ image0_CH_test.pt
|
399 |
+
β β βββ image1000_CH_test.pt
|
400 |
+
β β βββ image1001_CH_test.pt
|
401 |
+
β β ... (5000 files total)
|
402 |
+
β βββ 5000
|
403 |
+
β β βββ image5000_CH_test.pt
|
404 |
+
β β βββ image5001_CH_test.pt
|
405 |
+
β β βββ image5002_CH_test.pt
|
406 |
+
β β ... (5000 files total)
|
407 |
+
β βββ 10000
|
408 |
+
β βββ image10000_CH_test.pt
|
409 |
+
β βββ image10001_CH_test.pt
|
410 |
+
β βββ image10002_CH_test.pt
|
411 |
+
β ... (4400 files total)
|
412 |
+
βββ NY
|
413 |
+
β βββ 0
|
414 |
+
β β βββ image0_NY_test.pt
|
415 |
+
β β βββ image1000_NY_test.pt
|
416 |
+
β β βββ image1001_NY_test.pt
|
417 |
+
β β ... (5000 files total)
|
418 |
+
β βββ 5000
|
419 |
+
β β βββ image5000_NY_test.pt
|
420 |
+
β β βββ image5001_NY_test.pt
|
421 |
+
β β βββ image5002_NY_test.pt
|
422 |
+
β β ... (5000 files total)
|
423 |
+
β βββ 10000
|
424 |
+
β βββ image10000_NY_test.pt
|
425 |
+
β βββ image10001_NY_test.pt
|
426 |
+
β βββ image10002_NY_test.pt
|
427 |
+
β ... (4400 files total)
|
428 |
+
βββ NZ
|
429 |
+
β βββ 0
|
430 |
+
β β βββ image0_NZ_test.pt
|
431 |
+
β β βββ image1000_NZ_test.pt
|
432 |
+
β β βββ image1001_NZ_test.pt
|
433 |
+
β β ... (5000 files total)
|
434 |
+
β βββ 5000
|
435 |
+
β β βββ image5000_NZ_test.pt
|
436 |
+
β β βββ image5001_NZ_test.pt
|
437 |
+
β β βββ image5002_NZ_test.pt
|
438 |
+
β β ... (5000 files total)
|
439 |
+
β βββ 10000
|
440 |
+
β βββ image10000_NZ_test.pt
|
441 |
+
β βββ image10001_NZ_test.pt
|
442 |
+
β βββ image10002_NZ_test.pt
|
443 |
+
β ... (4400 files total)
|
444 |
+
βββ processed-flag-all
|
445 |
+
βββ processed-flag-CH
|
446 |
+
βββ processed-flag-NY
|
447 |
+
... (8 files total)
|
448 |
+
```
|
449 |
|
450 |
+
</details>
|
451 |
+
|
452 |
+
## Pretrained model weights
|
453 |
+
|
454 |
+
### Download
|
455 |
|
456 |
+
```
|
457 |
+
git lfs install
|
458 |
+
git clone https://huggingface.co/rsi/PixelsPointsPolygons $MODEL_ROOT
|
459 |
+
```
|
460 |
|
461 |
## Code
|
462 |
|
|
|
466 |
git clone https://github.com/raphaelsulzer/PixelsPointsPolygons
|
467 |
```
|
468 |
|
469 |
+
### Installation
|
470 |
|
471 |
+
To create a conda environment named `p3` and install the repository as a python package with all dependencies run
|
472 |
```
|
473 |
bash install.sh
|
474 |
```
|
|
|
497 |
| Pix2Poly |\<pix2poly>| PointPillars (PP) + ViT | \<pp_vit> | | β
| 0.80 | 0.88 |
|
498 |
| Pix2Poly |\<pix2poly>| PP+ViT \& ViT | \<fusion_vit> | β
|β
| 0.78 | 0.85 | -->
|
499 |
|
500 |
+
### Setup
|
501 |
+
|
502 |
+
The project supports hydra configuration which allows to modify any parameter either from a `.yaml` file of directly from the command line.
|
503 |
+
|
504 |
+
To setup the project structure we recommend to specify your `$DATA_ROOT` and `$MODEL_ROOT` in `config/host/default.yaml`.
|
505 |
|
506 |
+
To view all available configuration options run
|
|
|
507 |
```
|
508 |
+
python scripts/train.py --help
|
509 |
```
|
510 |
|
|
|
511 |
|
|
|
512 |
|
513 |
+
<!-- The most important parameters are described below:
|
514 |
+
<details>
|
515 |
+
<summary>CLI Parameters</summary>
|
516 |
|
517 |
+
```text
|
518 |
+
βββ processed-flag-all
|
519 |
+
βββ processed-flag-CH
|
520 |
+
βββ processed-flag-NY
|
521 |
+
... (8 files total)
|
522 |
```
|
523 |
|
524 |
+
</details> -->
|
525 |
|
526 |
+
### Predict a single tile
|
527 |
+
|
528 |
+
TODO
|
529 |
|
530 |
```
|
531 |
+
python scripts/predict_demo.py
|
532 |
+
```
|
533 |
+
|
534 |
+
### Reproduce paper results
|
535 |
|
536 |
+
To reproduce the results from the paper you can run any of the following commands
|
537 |
|
538 |
```
|
539 |
+
python scripts/modality_ablation.py
|
540 |
+
python scripts/lidar_density_ablation.py
|
541 |
+
python scripts/all_countries.py
|
542 |
```
|
|
|
543 |
|
544 |
+
### Custom training, prediction and evaluation
|
545 |
|
546 |
+
We recommend to first setup a custom `$EXP_FILE` in `config/experiment` following the structure of one of the existing experiment files, e.g. `ffl_fusion.yaml`. You can then run:
|
547 |
|
548 |
+
```
|
549 |
+
# train your model (on multiple GPUs)
|
550 |
+
torchrun --nproc_per_node=$NUM_GPU scripts/train.py experiment=$EXP_FILE
|
551 |
+
# predict the test set with your model (on multiple GPUs)
|
552 |
+
torchrun --nproc_per_node=$NUM_GPU scripts/predict.py evaluation=test checkpoint=best_val_iou
|
553 |
+
# evaluate your prediction of the test set
|
554 |
+
python scripts/evaluate.py model=<model> evaluation=test checkpoint=best_val_iou
|
555 |
+
```
|
556 |
|
557 |
+
You could also continue training from a provided pretrained model with
|
558 |
|
559 |
+
```
|
560 |
+
# train your model (on a single GPU)
|
561 |
+
python scripts/train.py experiment=p2p_fusion checkpoint=latest
|
562 |
+
```
|
563 |
|
564 |
## Citation
|
565 |
|
566 |
If you find our work useful, please consider citing:
|
567 |
```bibtex
|
568 |
+
TODO
|
569 |
```
|
570 |
|
571 |
## Acknowledgements
|