update readme
Browse files- PixelsPointsPolygons.py +170 -0
- README.md +73 -44
PixelsPointsPolygons.py
ADDED
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
# TODO: Address all TODOs and remove all explanatory comments
|
15 |
+
"""TODO: Add a description here."""
|
16 |
+
|
17 |
+
import json
|
18 |
+
import os
|
19 |
+
import datasets
|
20 |
+
|
21 |
+
_CITATION = """\
|
22 |
+
@InProceedings{arxiv,
|
23 |
+
title = {The P3 dataset: Pixels, Points and Polygons <br> for Multimodal Building Vectorization},
|
24 |
+
author={Raphael Sulzer},
|
25 |
+
year={2025}
|
26 |
+
}
|
27 |
+
"""
|
28 |
+
|
29 |
+
_DESCRIPTION = """\
|
30 |
+
The P3 dataset is a large-scale multimodal benchmark for building vectorization, constructed from aerial LiDAR point clouds, high-resolution aerial imagery, and vectorized 2D building outlines, collected across three continents.
|
31 |
+
"""
|
32 |
+
|
33 |
+
_HOMEPAGE = "https://github.com/raphaelsulzer/PixelsPointsPolygons"
|
34 |
+
|
35 |
+
_LICENSE = "cc-by-4.0"
|
36 |
+
|
37 |
+
|
38 |
+
# _URLS = {
|
39 |
+
# "first_domain": "https://huggingface.co/great-new-dataset-first_domain.zip",
|
40 |
+
# "second_domain": "https://huggingface.co/great-new-dataset-second_domain.zip",
|
41 |
+
# }
|
42 |
+
|
43 |
+
class PixelsPointsPolygons(datasets.GeneratorBasedBuilder):
|
44 |
+
"""The P3 dataset is a large-scale multimodal benchmark for building vectorization."""
|
45 |
+
|
46 |
+
VERSION = datasets.Version("1.0.0")
|
47 |
+
|
48 |
+
# This is an example of a dataset with multiple configurations.
|
49 |
+
# If you don't want/need to define several sub-sets in your dataset,
|
50 |
+
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
|
51 |
+
|
52 |
+
# If you need to make complex sub-parts in the datasets with configurable options
|
53 |
+
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
|
54 |
+
# BUILDER_CONFIG_CLASS = MyBuilderConfig
|
55 |
+
|
56 |
+
# You will be able to load one or the other configurations in the following list with
|
57 |
+
# data = datasets.load_dataset('my_dataset', 'first_domain')
|
58 |
+
# data = datasets.load_dataset('my_dataset', 'second_domain')
|
59 |
+
BUILDER_CONFIGS = [
|
60 |
+
datasets.BuilderConfig(name="all", version=VERSION, description="Data from all countries (CH, NY, NZ)"),
|
61 |
+
datasets.BuilderConfig(name="CH", version=VERSION, description="Data from Switzerland (CH) only"),
|
62 |
+
datasets.BuilderConfig(name="NY", version=VERSION, description="Data from New York State, US (NY) only"),
|
63 |
+
datasets.BuilderConfig(name="NZ", version=VERSION, description="Data from New Zealand (NZ) only"),
|
64 |
+
]
|
65 |
+
|
66 |
+
DEFAULT_CONFIG_NAME = "all" # It's not mandatory to have a default configuration. Just use one if it make sense.
|
67 |
+
|
68 |
+
def _info(self):
|
69 |
+
# TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
|
70 |
+
# if self.config.name == "first_domain": # This is the name of the configuration selected in BUILDER_CONFIGS above
|
71 |
+
# features = datasets.Features(
|
72 |
+
# {
|
73 |
+
# "sentence": datasets.Value("string"),
|
74 |
+
# "option1": datasets.Value("string"),
|
75 |
+
# "answer": datasets.Value("string")
|
76 |
+
# # These are the features of your dataset like images, labels ...
|
77 |
+
# }
|
78 |
+
# )
|
79 |
+
# else: # This is an example to show how to have different features for "first_domain" and "second_domain"
|
80 |
+
# features = datasets.Features(
|
81 |
+
# {
|
82 |
+
# "sentence": datasets.Value("string"),
|
83 |
+
# "option2": datasets.Value("string"),
|
84 |
+
# "second_domain_answer": datasets.Value("string")
|
85 |
+
# # These are the features of your dataset like images, labels ...
|
86 |
+
# }
|
87 |
+
# )
|
88 |
+
features = datasets.Features(
|
89 |
+
{
|
90 |
+
"images": datasets.Value("uint8"),
|
91 |
+
"lidar": datasets.Value("float32"),
|
92 |
+
"polygon": datasets.Value("float32"),
|
93 |
+
}
|
94 |
+
)
|
95 |
+
return datasets.DatasetInfo(
|
96 |
+
# This is the description that will appear on the datasets page.
|
97 |
+
description=_DESCRIPTION,
|
98 |
+
# This defines the different columns of the dataset and their types
|
99 |
+
features=features, # Here we define them above because they are different between the two configurations
|
100 |
+
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
|
101 |
+
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
|
102 |
+
# supervised_keys=("sentence", "label"),
|
103 |
+
# Homepage of the dataset for documentation
|
104 |
+
homepage=_HOMEPAGE,
|
105 |
+
# License for the dataset if available
|
106 |
+
license=_LICENSE,
|
107 |
+
# Citation for the dataset
|
108 |
+
citation=_CITATION,
|
109 |
+
)
|
110 |
+
|
111 |
+
def _get_urls(self):
|
112 |
+
|
113 |
+
|
114 |
+
|
115 |
+
def _split_generators(self, dl_manager):
|
116 |
+
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
|
117 |
+
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
|
118 |
+
|
119 |
+
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
|
120 |
+
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
|
121 |
+
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
|
122 |
+
urls = _URLS[self.config.name]
|
123 |
+
data_dir = dl_manager.download_and_extract(urls)
|
124 |
+
return [
|
125 |
+
datasets.SplitGenerator(
|
126 |
+
name=datasets.Split.TRAIN,
|
127 |
+
# These kwargs will be passed to _generate_examples
|
128 |
+
gen_kwargs={
|
129 |
+
"filepath": os.path.join(data_dir, "train.jsonl"),
|
130 |
+
"split": "train",
|
131 |
+
},
|
132 |
+
),
|
133 |
+
datasets.SplitGenerator(
|
134 |
+
name=datasets.Split.VALIDATION,
|
135 |
+
# These kwargs will be passed to _generate_examples
|
136 |
+
gen_kwargs={
|
137 |
+
"filepath": os.path.join(data_dir, "dev.jsonl"),
|
138 |
+
"split": "dev",
|
139 |
+
},
|
140 |
+
),
|
141 |
+
datasets.SplitGenerator(
|
142 |
+
name=datasets.Split.TEST,
|
143 |
+
# These kwargs will be passed to _generate_examples
|
144 |
+
gen_kwargs={
|
145 |
+
"filepath": os.path.join(data_dir, "test.jsonl"),
|
146 |
+
"split": "test"
|
147 |
+
},
|
148 |
+
),
|
149 |
+
]
|
150 |
+
|
151 |
+
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
152 |
+
def _generate_examples(self, filepath, split):
|
153 |
+
# TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
|
154 |
+
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
|
155 |
+
with open(filepath, encoding="utf-8") as f:
|
156 |
+
for key, row in enumerate(f):
|
157 |
+
data = json.loads(row)
|
158 |
+
if self.config.name == "first_domain":
|
159 |
+
# Yields examples as (key, example) tuples
|
160 |
+
yield key, {
|
161 |
+
"sentence": data["sentence"],
|
162 |
+
"option1": data["option1"],
|
163 |
+
"answer": "" if split == "test" else data["answer"],
|
164 |
+
}
|
165 |
+
else:
|
166 |
+
yield key, {
|
167 |
+
"sentence": data["sentence"],
|
168 |
+
"option2": data["option2"],
|
169 |
+
"second_domain_answer": "" if split == "test" else data["second_domain_answer"],
|
170 |
+
}
|
README.md
CHANGED
@@ -20,44 +20,42 @@ tags:
|
|
20 |
- Vectorization
|
21 |
language:
|
22 |
- en
|
23 |
-
configs:
|
24 |
-
- config_name: all
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
- config_name: CH
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
- config_name: NY
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
- config_name: NZ
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
---
|
57 |
|
58 |
|
59 |
-
|
60 |
-
|
61 |
<div align="center">
|
62 |
<h1 align="center">The P<sup>3</sup> dataset: Pixels, Points and Polygons <br> for Multimodal Building Vectorization</h1>
|
63 |
<h3><align="center">Raphael Sulzer<sup>1,2</sup> Liuyun Duan<sup>1</sup>
|
@@ -67,6 +65,16 @@ configs:
|
|
67 |
<b>Figure 1</b>: A view of our dataset of Zurich, Switzerland
|
68 |
</div>
|
69 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
## Abstract
|
71 |
|
72 |
<div align="justify">
|
@@ -79,7 +87,6 @@ We present the P<sup>3</sup> dataset, a large-scale multimodal benchmark for bui
|
|
79 |
- A library for training and evaluating state-of-the-art deep learning methods on the dataset, available at [github.com/raphaelsulzer/PixelsPointsPolygons](https://github.com/raphaelsulzer/PixelsPointsPolygons)
|
80 |
- Pretrained model weights, available at [huggingface.co/rsi/PixelsPointsPolygons](https://huggingface.co/rsi/PixelsPointsPolygons)
|
81 |
|
82 |
-
|
83 |
## Dataset
|
84 |
|
85 |
### Overview
|
@@ -90,15 +97,26 @@ We present the P<sup>3</sup> dataset, a large-scale multimodal benchmark for bui
|
|
90 |
|
91 |
### Download
|
92 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
```
|
94 |
git lfs install
|
95 |
git clone https://huggingface.co/datasets/rsi/PixelsPointsPolygons $DATA_ROOT
|
96 |
```
|
97 |
|
|
|
|
|
98 |
### Structure
|
99 |
|
100 |
<details>
|
101 |
-
<summary>📁 Click to expand folder structure</summary -->
|
102 |
|
103 |
```text
|
104 |
PixelsPointsPolygons/data/224
|
@@ -490,12 +508,21 @@ PixelsPointsPolygons/data/224
|
|
490 |
|
491 |
### Download
|
492 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
493 |
```
|
494 |
-
git lfs install
|
495 |
git clone https://huggingface.co/rsi/PixelsPointsPolygons $MODEL_ROOT
|
496 |
```
|
497 |
|
498 |
-
|
|
|
|
|
499 |
|
500 |
### Download
|
501 |
|
@@ -536,7 +563,7 @@ pip install .
|
|
536 |
|
537 |
### Setup
|
538 |
|
539 |
-
The project supports hydra configuration which allows to modify any parameter either from a `.yaml` file
|
540 |
|
541 |
To setup the project structure we recommend to specify your `$DATA_ROOT` and `$MODEL_ROOT` in `config/host/default.yaml`.
|
542 |
|
@@ -570,7 +597,7 @@ python scripts/predict_demo.py
|
|
570 |
|
571 |
### Reproduce paper results
|
572 |
|
573 |
-
To reproduce the results from the paper you can run
|
574 |
|
575 |
```
|
576 |
python scripts/modality_ablation.py
|
@@ -580,15 +607,17 @@ python scripts/all_countries.py
|
|
580 |
|
581 |
### Custom training, prediction and evaluation
|
582 |
|
583 |
-
We recommend to first setup a custom `$EXP_FILE` in `config/experiment
|
584 |
|
585 |
```
|
586 |
# train your model (on multiple GPUs)
|
587 |
torchrun --nproc_per_node=$NUM_GPU scripts/train.py experiment=$EXP_FILE
|
|
|
588 |
# predict the test set with your model (on multiple GPUs)
|
589 |
-
torchrun --nproc_per_node=$NUM_GPU scripts/predict.py evaluation=test checkpoint=best_val_iou
|
|
|
590 |
# evaluate your prediction of the test set
|
591 |
-
python scripts/evaluate.py model=<model> evaluation=test checkpoint=best_val_iou
|
592 |
```
|
593 |
|
594 |
You could also continue training from a provided pretrained model with
|
|
|
20 |
- Vectorization
|
21 |
language:
|
22 |
- en
|
23 |
+
# configs:
|
24 |
+
# - config_name: all
|
25 |
+
# data_files:
|
26 |
+
# - split: train
|
27 |
+
# path: "data/224/annotations/annotations_all_train.json"
|
28 |
+
# - split: val
|
29 |
+
# path: "data/224/annotations/annotations_all_val.json"
|
30 |
+
# - split: test
|
31 |
+
# path: "data/224/annotations/annotations_all_test.json"
|
32 |
+
# - config_name: CH
|
33 |
+
# data_files:
|
34 |
+
# - split: train
|
35 |
+
# path: "data/224/annotations/annotations_CH_train.json"
|
36 |
+
# - split: val
|
37 |
+
# path: "data/224/annotations/annotations_CH_val.json"
|
38 |
+
# - split: test
|
39 |
+
# path: "data/224/annotations/annotations_CH_test.json"
|
40 |
+
# - config_name: NY
|
41 |
+
# data_files:
|
42 |
+
# - split: train
|
43 |
+
# path: "data/224/annotations/annotations_NY_train.json"
|
44 |
+
# - split: val
|
45 |
+
# path: "data/224/annotations/annotations_NY_val.json"
|
46 |
+
# - split: test
|
47 |
+
# path: "data/224/annotations/annotations_NY_test.json"
|
48 |
+
# - config_name: NZ
|
49 |
+
# data_files:
|
50 |
+
# - split: train
|
51 |
+
# path: "data/224/annotations/annotations_NZ_train.json"
|
52 |
+
# - split: val
|
53 |
+
# path: "data/224/annotations/annotations_NZ_val.json"
|
54 |
+
# - split: test
|
55 |
+
# path: "data/224/annotations/annotations_NZ_test.json"
|
56 |
---
|
57 |
|
58 |
|
|
|
|
|
59 |
<div align="center">
|
60 |
<h1 align="center">The P<sup>3</sup> dataset: Pixels, Points and Polygons <br> for Multimodal Building Vectorization</h1>
|
61 |
<h3><align="center">Raphael Sulzer<sup>1,2</sup> Liuyun Duan<sup>1</sup>
|
|
|
65 |
<b>Figure 1</b>: A view of our dataset of Zurich, Switzerland
|
66 |
</div>
|
67 |
|
68 |
+
## Table of Contents
|
69 |
+
|
70 |
+
- [Abstract](#abstract)
|
71 |
+
- [Highlights](#highlights)
|
72 |
+
- [Dataset](#dataset)
|
73 |
+
- [Pretrained model weights](#pretrained-model-weights)
|
74 |
+
- [Code](#code)
|
75 |
+
- [Citation](#citation)
|
76 |
+
- [Acknowledgements](#acknowledgements)
|
77 |
+
|
78 |
## Abstract
|
79 |
|
80 |
<div align="justify">
|
|
|
87 |
- A library for training and evaluating state-of-the-art deep learning methods on the dataset, available at [github.com/raphaelsulzer/PixelsPointsPolygons](https://github.com/raphaelsulzer/PixelsPointsPolygons)
|
88 |
- Pretrained model weights, available at [huggingface.co/rsi/PixelsPointsPolygons](https://huggingface.co/rsi/PixelsPointsPolygons)
|
89 |
|
|
|
90 |
## Dataset
|
91 |
|
92 |
### Overview
|
|
|
97 |
|
98 |
### Download
|
99 |
|
100 |
+
The recommended and fastest way to download the dataset is to run
|
101 |
+
|
102 |
+
```
|
103 |
+
pip install huggingface_hub
|
104 |
+
python scripts/download_dataset.py --dataset-root $DATA_ROOT
|
105 |
+
```
|
106 |
+
|
107 |
+
Optionally you can also download the dataset by running
|
108 |
+
|
109 |
```
|
110 |
git lfs install
|
111 |
git clone https://huggingface.co/datasets/rsi/PixelsPointsPolygons $DATA_ROOT
|
112 |
```
|
113 |
|
114 |
+
Both options will download the full dataset, including aerial images (as .tif), aerial lidar point clouds (as .copc.laz) and building polygon annotaions (as MS-COCO .json) into `$DATA_ROOT` . The size of the dataset is around 163GB.
|
115 |
+
|
116 |
### Structure
|
117 |
|
118 |
<details>
|
119 |
+
<summary>📁 Click to expand dataset folder structure</summary -->
|
120 |
|
121 |
```text
|
122 |
PixelsPointsPolygons/data/224
|
|
|
508 |
|
509 |
### Download
|
510 |
|
511 |
+
The recommended and fastest way to download the pretrained model weights is to run
|
512 |
+
|
513 |
+
```
|
514 |
+
python scripts/download_pretrained.py --model-root $MODEL_ROOT
|
515 |
+
```
|
516 |
+
|
517 |
+
Optionally you can also download the weights by running
|
518 |
+
|
519 |
```
|
|
|
520 |
git clone https://huggingface.co/rsi/PixelsPointsPolygons $MODEL_ROOT
|
521 |
```
|
522 |
|
523 |
+
Both options will download all checkpoints (as .pth) and results presented in the paper (as MS-COCO .json) into `$MODEL_ROOT` .
|
524 |
+
|
525 |
+
## Code
|
526 |
|
527 |
### Download
|
528 |
|
|
|
563 |
|
564 |
### Setup
|
565 |
|
566 |
+
The project supports hydra configuration which allows to modify any parameter either from a `.yaml` file or directly from the command line.
|
567 |
|
568 |
To setup the project structure we recommend to specify your `$DATA_ROOT` and `$MODEL_ROOT` in `config/host/default.yaml`.
|
569 |
|
|
|
597 |
|
598 |
### Reproduce paper results
|
599 |
|
600 |
+
To reproduce the results from the paper you can run the following commands
|
601 |
|
602 |
```
|
603 |
python scripts/modality_ablation.py
|
|
|
607 |
|
608 |
### Custom training, prediction and evaluation
|
609 |
|
610 |
+
We recommend to first setup a custom experiment file `$EXP_FILE` in `config/experiment/` following the structure of one of the existing files, e.g. `ffl_fusion.yaml`. You can then run
|
611 |
|
612 |
```
|
613 |
# train your model (on multiple GPUs)
|
614 |
torchrun --nproc_per_node=$NUM_GPU scripts/train.py experiment=$EXP_FILE
|
615 |
+
|
616 |
# predict the test set with your model (on multiple GPUs)
|
617 |
+
torchrun --nproc_per_node=$NUM_GPU scripts/predict.py experiment=$EXP_FILE evaluation=test checkpoint=best_val_iou
|
618 |
+
|
619 |
# evaluate your prediction of the test set
|
620 |
+
python scripts/evaluate.py model=<model> experiment=$EXP_FILE evaluation=test checkpoint=best_val_iou
|
621 |
```
|
622 |
|
623 |
You could also continue training from a provided pretrained model with
|