--- language: - ar configs: - config_name: default data_files: - split: Amiri path: Amiri/*.csv - split: Sakkal_Majalla path: Sakkal_Majalla/*.csv - split: Arial path: Arial/*.csv - split: Calibri path: Calibri/*.csv - split: Scheherazade_New path: Scheherazade_New/*.csv features: text: dtype: string csv_options: delimiter: ',' quotechar: '"' encoding: utf-8 tags: - dataset - OCR - Arabic - Image_To_Text license: apache-2.0 task_categories: - image-to-text pretty_name: 'SAND: A Large-Scale Synthetic Arabic OCR Corpus for Vision-Language Models' size_categories: - 100K
Sample 1 - Amiri Font Sample 2 - Arial Font
Sample 3 - Calibri Font Sample 4 - Scheherazade Font
Each split contains data specific to a single font with the following attributes: - `image_name`: Unique identifier for each image - `chunk`: The text content associated with the image - `font_name`: The font used in text rendering - `image_base64`: Base64-encoded image representation ## Content Distribution | Category | Number of Articles | |----------|-------------------| | Culture | 13,253 | | Fatawa & Counsels | 8,096 | | Literature & Language | 11,581 | | Bibliography | 26,393 | | Publications & Competitions | 1,123 | | Shariah | 46,665 | | Social | 8,827 | | Translations | 443 | | Muslim's News | 16,725 | | **Total Articles** | **133,105** | ## Font Specifications | Font | Words Per Page | Font Size | |------|----------------|-----------| | Sakkal Majalla | 50–300 | 14 pt | | Arial | 50–500 | 12 pt | | Calibri | 50–500 | 12 pt | | Amiri | 50–300 | 12 pt | | Scheherazade | 50–250 | 12 pt | ## Page Layout | Specification | Measurement | |---------------|-------------| | Left Margin | 0.9 inches | | Right Margin | 0.9 inches | | Top Margin | 1.0 inch | | Bottom Margin | 1.0 inch | | Gutter Margin | 0.2 inches | | Page Width | 8.27 inches (A4) | | Page Height | 11.69 inches (A4) | ## Usage Example ```python from datasets import load_dataset import base64 from io import BytesIO from PIL import Image import matplotlib.pyplot as plt # Load dataset with streaming enabled ds = load_dataset("riotu-lab/SARD", streaming=True) print(ds) # Iterate over a specific font dataset (e.g., Amiri) for sample in ds["Amiri"]: image_name = sample["image_name"] chunk = sample["chunk"] # Arabic text transcription font_name = sample["font_name"] # Decode Base64 image image_data = base64.b64decode(sample["image_base64"]) image = Image.open(BytesIO(image_data)) # Display the image plt.figure(figsize=(10, 10)) plt.imshow(image) plt.axis('off') plt.title(f"Font: {font_name}") plt.show() # Print the details print(f"Image Name: {image_name}") print(f"Font Name: {font_name}") print(f"Text Chunk: {chunk}") # Break after one sample for testing break ``` ## Applications SAND is designed to support various Arabic text recognition tasks: - Training and evaluating OCR models for Arabic text - Developing vision-language models for document understanding - Fine-tuning existing OCR models for better Arabic script recognition - Benchmarking OCR performance across different fonts and layouts - Research in Arabic natural language processing and computer vision ## Acknowledgments The authors thank Prince Sultan University for their support in developing this dataset.