Datasets:

Modalities:
Tabular
Formats:
parquet
Languages:
English
ArXiv:
DOI:
Libraries:
Datasets
pandas
License:
xionghuichen commited on
Commit
f44c7fe
·
verified ·
1 Parent(s): 49f3b24

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +117 -1
README.md CHANGED
@@ -65,4 +65,120 @@ configs:
65
  - split: val
66
  path: "Simglucose-high/val/*.parquet"
67
  ---
68
- This is the dataset for NeoRL-2: Near Real-World Benchmarks for Offline Reinforcement Learning with Extended Realistic Scenarios
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65
  - split: val
66
  path: "Simglucose-high/val/*.parquet"
67
  ---
68
+ # Dataset Card for NeoRL2: Near RealWorld Benchmarks for Offline Reinforcement Learning
69
+
70
+ ## Dataset Summary
71
+
72
+ **NeoRL-2** is a collection of seven near–real-world offline-RL datasets *plus* their evaluation simulators. This repo we provide the offline-RL dataset, while the simulators are in <https://github.com/polixir/NeoRL2>.
73
+
74
+ Each task injects one or more realistic challenges—delays, exogenous disturbances, global safety constraints, traditional rule-based data, and/or severe data scarcity—into a lightweight control environment.
75
+
76
+
77
+ ---
78
+
79
+ ## Dataset Details
80
+
81
+ | Challenge | Brief description | Appears in |
82
+ |-----------|-------------------|------------|
83
+ | **Delay** | Long & variable observation-to-effect latency | Pipeline, Simglucose |
84
+ | **External factors** | State variables the agent cannot influence (e.g. wind, ground-friction) | RocketRecovery, RandomFrictionHopper, Simglucose |
85
+ | **Global safety constraints** | Hard limits that must never be violated | SafetyHalfCheetah |
86
+ | **Rule-based behaviour policy** | Trajectories from a PID or other deterministic controller | DMSD |
87
+ | **Severely limited data** | Tiny datasets reflecting expensive experimentation | Fusion, RocketRecovery, SafetyHalfCheetah |
88
+
89
+ * **Curated by:** Polixir Technologies
90
+ * **Paper:** Gao *et al.* “NeoRL-2: Near Real-World Benchmarks for Offline Reinforcement Learning with Extended Realistic Scenarios”, arXiv:2503.19267 (2025)
91
+ * **Repository (the environments for the datasets are in here):** <https://github.com/polixir/NeoRL2>
92
+ * **Task:** offline / batch reinforcement learning
93
+
94
+ ## Uses
95
+
96
+ ### Direct Use
97
+ * Benchmarking offline-RL algorithms under near-deployment conditions
98
+ * Studying robustness to delays, safety limits, exogenous disturbances and data scarcity
99
+ * Developing data-efficient model-based or model-free methods able to outperform conservative behaviour policies
100
+
101
+ #### Loading example
102
+ ```python
103
+ from datasets import load_dataset
104
+
105
+ dmsd = load_dataset("polixir/neorl2", "DMSD", split="train")
106
+ state, action, reward, next_state, done = dmsd[0].values()
107
+ ```
108
+
109
+ ### Out-of-Scope Use
110
+ * Online RL with unlimited interaction
111
+ * Safety-critical decision-making without extensive validation on the real system
112
+
113
+
114
+ ---
115
+
116
+ ## Dataset Structure
117
+
118
+ Each Parquet row contains
119
+
120
+ | Key | Type | Description |
121
+ |--------------------|-------------|-------------------------------------------------|
122
+ | `observations` | float32[] | Raw observation vector (dim varies per task) |
123
+ | `actions` | float32[] | Continuous action taken by the behaviour policy |
124
+ | `rewards` | float32 | Scalar reward |
125
+ | `next_observations`| float32[] | Observation at the next timestep |
126
+ | `terminals` | bool | `True` if episode ended (termination or safety) |
127
+
128
+ Typical dataset sizes are **≈100 k transitions**; *Fusion*, *RocketRecovery* and *SafetyHalfCheetah* are smaller by design.
129
+
130
+ ---
131
+
132
+ ## Baseline Benchmark
133
+
134
+ ### Normalised return (0 – 100) – best of 3 seeds
135
+
136
+ | Task | Data | BC | CQL | EDAC | MCQ | TD3BC | MOPO | COMBO | RAMBO | MOBILE |
137
+ |------|------|----|----|------|----|------|------|------|------|-------|
138
+ | **Pipeline** | 69.25 | 68.6 ± 13.4 | **81.1 ± 8.3** | 72.9 ± 4.6 | 49.7 ± 7.4 | **81.9 ± 7.5** | −26.3 ± 92.7 | 55.5 ± 4.3 | 24.1 ± 74.4 | 65.5 ± 4.1 |
139
+ | **Simglucose** | 73.9 | **75.1 ± 0.7** | 11.0 ± 3.4 | 8.1 ± 0.3 | 29.6 ± 5.7 | **74.2 ± 0.4** | 34.6 ± 28.1 | 23.2 ± 2.5 | 10.8 ± 0.9 | 9.3 ± 0.2 |
140
+ | **RocketRecovery** | 75.3 | 72.8 ± 2.5 | 74.3 ± 1.4 | 65.7 ± 9.8 | **76.5 ± 0.8** | **79.7 ± 0.9** | −27.7 ± 105.6 | 74.7 ± 0.7 | −44.2 ± 263.0 | 43.7 ± 17.5 |
141
+ | **RandomFrictionHopper** | 28.7 | 28.0 ± 0.3 | 33.0 ± 1.2 | **34.7 ± 1.3** | 31.7 ± 1.3 | 29.5 ± 0.7 | 32.5 ± 5.8 | 34.1 ± 4.7 | 29.6 ± 7.2 | **35.1 ± 0.5** |
142
+ | **DMSD** | 56.6 | 65.1 ± 1.6 | 70.2 ± 1.1 | **78.7 ± 2.3** | **77.8 ± 1.2** | 60.0 ± 0.8 | 68.2 ± 0.7 | 68.3 ± 0.4 | 76.2 ± 1.9 | 64.4 ± 0.8 |
143
+ | **Fusion** | 48.8 | 55.2 ± 0.3 | 55.9 ± 1.9 | **58.0 ± 0.7** | 49.7 ± 1.1 | 54.6 ± 0.8 | −11.6 ± 22.2 | 55.5 ± 0.3 | **59.6 ± 5.0** | 5.0 ± 7.1 |
144
+ | **SafetyHalfCheetah** | 73.6 | 70.2 ± 0.4 | 71.2 ± 0.6 | 53.1 ± 11.1 | 54.7 ± 4.3 | 68.6 ± 0.4 | 23.7 ± 24.3 | 57.8 ± 13.3 | −422.4 ± 307.5 | 8.7 ± 3.9 |
145
+
146
+ ### How often do algorithms beat the behaviour policy?
147
+
148
+ | Margin | BC | CQL | EDAC | MCQ | TD3BC | MOPO | COMBO | RAMBO | MOBILE |
149
+ |--------|----|----|----|----|------|------|------|------|-------|
150
+ | ≥ 0 | 3 | 4 | 4 | 4 | **6** | 2 | 3 | 3 | 2 |
151
+ | ≥ +3 | 2 | 4 | 4 | 2 | **4** | 2 | 3 | 2 | 2 |
152
+ | ≥ +5 | 2 | 3 | 3 | 1 | **2** | 1 | 3 | 2 | 2 |
153
+ | ≥ +10 | 0 | 2 | 1 | 1 | **1** | 1 | 1 | 2 | 0 |
154
+
155
+ ### Key conclusions
156
+
157
+ * No baseline “solves” any task (score ≥ 95). Best result is TD3BC’s 81.9 on *Pipeline*.
158
+ * **TD3BC** is the most reliable algorithm, surpassing the data in 6 / 7 tasks and still leading at stricter margins.
159
+ * Model-based methods (MOPO, RAMBO, and MOBILE) are brittle, with large variance and occasional catastrophic divergence.
160
+ * *DMSD* is easiest: many algorithms exceed the behaviour policy by 20 + points thanks to simple PID data.
161
+ * *SafetyHalfCheetah* is hardest: every method trails the data due to strict safety penalties and limited samples.
162
+ * In general, model-free approaches show smaller error bars than model-based ones, underlining the challenge of learning accurate dynamics under delay, disturbance and scarcity.
163
+
164
+ ---
165
+
166
+ ## Citation
167
+
168
+ ```bibtex
169
+ @misc{gao2025neorl2,
170
+ title = {NeoRL-2: Near Real-World Benchmarks for Offline Reinforcement Learning with Extended Realistic Scenarios},
171
+ author = {Songyi Gao and Zuolin Tu and Rong-Jun Qin and Yi-Hao Sun and Xiong-Hui Chen and Yang Yu},
172
+ year = {2025},
173
+ eprint = {2503.19267},
174
+ archivePrefix = {arXiv},
175
+ primaryClass = {cs.LG}
176
+ }
177
+ ```
178
+
179
+ ---
180
+
181
+ ## Contact
182
+
183
+ Questions or bug reports? Please open an issue on the [NeoRL-2 GitHub repo](https://github.com/polixir/NeoRL2).
184
+