import os import csv from tqdm import tqdm # For progress bar display from funasr import AutoModel from funasr.utils.postprocess_utils import rich_transcription_postprocess # Define model path model_dir = "iic/SenseVoiceSmall" # Initialize model model = AutoModel( model=model_dir, trust_remote_code=True, remote_code="./model.py", vad_model="fsmn-vad", vad_kwargs={"max_single_segment_time": 30000}, device="cuda:0", ) # Define audio folder path audio_folder = "" # Output CSV file path output_csv = "./recognition_results.csv" # Get all .flac files in audio folder audio_files = [f for f in os.listdir(audio_folder) if f.endswith(".flac")] # Prepare CSV file and write header (if file is empty) if not os.path.exists(output_csv) or os.path.getsize(output_csv) == 0: with open(output_csv, mode="w", newline="", encoding="utf-8") as file: writer = csv.writer(file) writer.writerow(["Audio File", "Transcription"]) # CSV column headers # Get existing processed audio files to avoid reprocessing existing_files = set() with open(output_csv, mode="r", newline="", encoding="utf-8") as file: reader = csv.reader(file) next(reader) # Skip header row for row in reader: existing_files.add(row[0]) # Add processed files to set # Process all .flac files in audio folder with open(output_csv, mode="a", newline="", encoding="utf-8") as file: writer = csv.writer(file) # Show progress bar using tqdm for audio_file in tqdm(audio_files, desc="Processing", unit="file"): # Skip if file already processed if audio_file in existing_files: continue audio_path = os.path.join(audio_folder, audio_file) try: # Perform speech recognition res = model.generate( input=audio_path, cache={}, language="auto", # Auto-detect language use_itn=True, batch_size_s=60, merge_vad=True, merge_length_s=15, ) # Get transcription with post-processing transcription = rich_transcription_postprocess(res[0]["text"]) # Mark as "none!" if transcription is empty if not transcription.strip(): transcription = "none!" except Exception as e: # Record error if recognition fails transcription = f"Error: {str(e)}" # Write filename and transcription to CSV writer.writerow([audio_file, transcription]) print("Recognition completed and saved to CSV.")