import torch import os import csv from tqdm import tqdm from imagebind import data from imagebind.models import imagebind_model from imagebind.models.imagebind_model import ModalityType from pathlib import Path import pandas as pd import random import torch.nn.functional as F # Set device: Use GPU if available, otherwise CPU device = "" # Load ImageBind model try: model = imagebind_model.imagebind_huge(pretrained=True) model.eval() model.to(device) except Exception as e: print(f"Error loading the model: {e}") exit(1) # Exit if model loading fails # Set audio and video folder paths audio_folder = "" video_folder = "" # Read CSV file csv_file = '' try: df = pd.read_csv(csv_file) except Exception as e: print(f"Error reading CSV file {csv_file}: {e}") exit(1) # Prepare output CSV and error log files output_csv = 'output.csv' error_log_file = 'test.log' # Track processed files by reading existing output (if any) processed_files = set() if os.path.exists(output_csv): try: with open(output_csv, mode='r') as file: reader = csv.reader(file) for row in reader: file_name = row[0] # Full filename processed_files.add(file_name) # Record processed files except Exception as e: print(f"Error reading the output CSV file {output_csv}: {e}") exit(1) # Initialize lists for matched audio-video pairs paired_audio_paths = [] paired_video_paths = [] # Open error log for writing with open(error_log_file, mode='a') as error_log: # Process each file_id, skipping already processed files for file_id in df['file_id']: audio_file = f"{file_id}.flac" video_file = f"000040.jpg" video_path = os.path.join(video_folder, file_id, video_file) audio_path = os.path.join(audio_folder, audio_file) # Get basenames without extensions video_name = os.path.basename(video_path) audio_name = os.path.basename(audio_path) video_name_no_ext = os.path.splitext(video_name)[0] audio_name_no_ext = os.path.splitext(audio_name)[0] # Skip if already processed if video_name_no_ext in processed_files or audio_name_no_ext in processed_files: continue # Validate file existence if not os.path.exists(video_path): error_log.write(f"Video directory not found: {video_path}\n") continue if not os.path.exists(audio_path): error_log.write(f"Audio file not found: {audio_path}\n") continue paired_audio_paths.append(audio_path) paired_video_paths.append(video_path) print(f"Successfully matched {len(paired_audio_paths)} audio-video pairs.") # Batch processing configuration batch_size = 16 num_batches = len(paired_video_paths) // batch_size + 1 # Process and write results try: with open(output_csv, mode='a', newline='') as file: writer = csv.writer(file) with torch.no_grad(): for i in tqdm(range(num_batches), desc="Processing Batches"): start_idx = i * batch_size end_idx = min((i + 1) * batch_size, len(paired_video_paths)) # Get current batch paths video_batch_paths = paired_video_paths[start_idx:end_idx] audio_batch_paths = paired_audio_paths[start_idx:end_idx] try: # Load batch data video_batch = data.load_and_transform_vision_data(video_batch_paths, device) audio_batch = data.load_and_transform_audio_data(audio_batch_paths, device) except RuntimeError as e: print(f"Error loading video data in batch {i}: {e}") continue except Exception as e: print(f"Unexpected error in batch {i}: {e}") continue try: # Model inference inputs = { ModalityType.VISION: video_batch, ModalityType.AUDIO: audio_batch, } embeddings = model(inputs) # Calculate similarity audio_embedding = embeddings[ModalityType.AUDIO] video_embedding = embeddings[ModalityType.VISION] batch_similarity = F.cosine_similarity(video_embedding, audio_embedding) * 10 # Write results for video_path, similarity in zip(video_batch_paths, batch_similarity.tolist()): video_name = os.path.basename(os.path.dirname(video_path)) writer.writerow([video_name, similarity]) except Exception as e: print(f"Error processing batch {i}: {e}") continue except Exception as e: print(f"Error writing to the output CSV file {output_csv}: {e}") exit(1) print(f"Similarity scores have been saved to {output_csv}.") print(f"Any missing files have been logged in {error_log_file}.")