File size: 5,137 Bytes
77dbe7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import torch
import os
import csv
from tqdm import tqdm
from imagebind import data
from imagebind.models import imagebind_model
from imagebind.models.imagebind_model import ModalityType
from pathlib import Path
import pandas as pd
import random
import torch.nn.functional as F

# Set device: Use GPU if available, otherwise CPU
device = ""

# Load ImageBind model
try:
    model = imagebind_model.imagebind_huge(pretrained=True)
    model.eval()
    model.to(device)
except Exception as e:
    print(f"Error loading the model: {e}")
    exit(1)  # Exit if model loading fails

# Set audio and video folder paths
audio_folder = ""
video_folder = ""

# Read CSV file
csv_file = ''
try:
    df = pd.read_csv(csv_file)
except Exception as e:
    print(f"Error reading CSV file {csv_file}: {e}")
    exit(1)

# Prepare output CSV and error log files
output_csv = 'output.csv'
error_log_file = 'test.log'

# Track processed files by reading existing output (if any)
processed_files = set()
if os.path.exists(output_csv):
    try:
        with open(output_csv, mode='r') as file:
            reader = csv.reader(file)
            for row in reader:
                file_name = row[0]  # Full filename
                processed_files.add(file_name)  # Record processed files
    except Exception as e:
        print(f"Error reading the output CSV file {output_csv}: {e}")
        exit(1)

# Initialize lists for matched audio-video pairs
paired_audio_paths = []
paired_video_paths = []

# Open error log for writing
with open(error_log_file, mode='a') as error_log:
    # Process each file_id, skipping already processed files
    for file_id in df['file_id']:
        audio_file = f"{file_id}.flac"
        video_file = f"000040.jpg"
        
        video_path = os.path.join(video_folder, file_id, video_file)
        audio_path = os.path.join(audio_folder, audio_file)

        # Get basenames without extensions
        video_name = os.path.basename(video_path)
        audio_name = os.path.basename(audio_path)
        video_name_no_ext = os.path.splitext(video_name)[0]
        audio_name_no_ext = os.path.splitext(audio_name)[0]

        # Skip if already processed
        if video_name_no_ext in processed_files or audio_name_no_ext in processed_files:
            continue

        # Validate file existence
        if not os.path.exists(video_path):
            error_log.write(f"Video directory not found: {video_path}\n")
            continue

        if not os.path.exists(audio_path):
            error_log.write(f"Audio file not found: {audio_path}\n")
            continue

        paired_audio_paths.append(audio_path)
        paired_video_paths.append(video_path)

print(f"Successfully matched {len(paired_audio_paths)} audio-video pairs.")

# Batch processing configuration
batch_size = 16 
num_batches = len(paired_video_paths) // batch_size + 1

# Process and write results
try:
    with open(output_csv, mode='a', newline='') as file:
        writer = csv.writer(file)

        with torch.no_grad():
            for i in tqdm(range(num_batches), desc="Processing Batches"):
                start_idx = i * batch_size
                end_idx = min((i + 1) * batch_size, len(paired_video_paths))

                # Get current batch paths
                video_batch_paths = paired_video_paths[start_idx:end_idx]
                audio_batch_paths = paired_audio_paths[start_idx:end_idx]

                try:
                    # Load batch data
                    video_batch = data.load_and_transform_vision_data(video_batch_paths, device) 
                    audio_batch = data.load_and_transform_audio_data(audio_batch_paths, device)
                except RuntimeError as e:
                    print(f"Error loading video data in batch {i}: {e}")
                    continue
                except Exception as e:
                    print(f"Unexpected error in batch {i}: {e}")
                    continue

                try:
                    # Model inference
                    inputs = {
                        ModalityType.VISION: video_batch,
                        ModalityType.AUDIO: audio_batch,
                    }

                    embeddings = model(inputs)

                    # Calculate similarity
                    audio_embedding = embeddings[ModalityType.AUDIO]
                    video_embedding = embeddings[ModalityType.VISION]
                    batch_similarity = F.cosine_similarity(video_embedding, audio_embedding) * 10

                    # Write results
                    for video_path, similarity in zip(video_batch_paths, batch_similarity.tolist()):
                        video_name = os.path.basename(os.path.dirname(video_path))
                        writer.writerow([video_name, similarity])
                except Exception as e:
                    print(f"Error processing batch {i}: {e}")
                    continue
except Exception as e:
    print(f"Error writing to the output CSV file {output_csv}: {e}")
    exit(1)

print(f"Similarity scores have been saved to {output_csv}.")
print(f"Any missing files have been logged in {error_log_file}.")