obadx nielsr HF Staff commited on
Commit
bb5e0e7
·
verified ·
1 Parent(s): 8ac083b

Improve dataset card: Add metadata, paper/project links, results, and sample usage (#2)

Browse files

- Improve dataset card: Add metadata, paper/project links, results, and sample usage (de513dcff165c32101f57d6d80c36d7fdc5751a0)


Co-authored-by: Niels Rogge <nielsr@users.noreply.huggingface.co>

Files changed (1) hide show
  1. README.md +157 -33
README.md CHANGED
@@ -1,38 +1,37 @@
1
  ---
2
  configs:
3
- - config_name: default
4
- data_files:
5
- - split: train
6
- path:
7
- - data/recitation_0/train/*.parquet
8
- - data/recitation_1/train/*.parquet
9
- - data/recitation_2/train/*.parquet
10
- - data/recitation_3/train/*.parquet
11
- - data/recitation_5/train/*.parquet
12
- - data/recitation_6/train/*.parquet
13
- - data/recitation_7/train/*.parquet
14
- - split: validation
15
- path:
16
- - data/recitation_0/validation/*.parquet
17
- - data/recitation_1/validation/*.parquet
18
- - data/recitation_2/validation/*.parquet
19
- - data/recitation_3/validation/*.parquet
20
- - data/recitation_5/validation/*.parquet
21
- - data/recitation_6/validation/*.parquet
22
- - data/recitation_7/validation/*.parquet
23
- - split: test
24
- path:
25
- - data/recitation_8/train/*.parquet
26
- - data/recitation_8/validation/*.parquet
27
  dataset_info:
28
  splits:
29
- - name: train
30
- num_examples: 54823
31
- - name: test
32
- num_examples: 8787
33
- - name: validation
34
- num_examples: 7175
35
-
36
  featrues:
37
  - dtype: string
38
  name: aya_name
@@ -85,11 +84,136 @@ dataset_info:
85
  - null
86
  - 1
87
  name: labels
 
 
 
 
 
 
 
 
 
 
 
88
  ---
89
- # Recitation Segmentations Dataset
90
 
91
- This an modfied version of [this dataset](https://huggingface.co/datasets/obadx/recitation-segmentation) with these modifications:
 
 
 
 
 
 
 
 
 
92
  * adding augmentation to the speed of the recitations utterance with column `speed` reflects the speed from 0.8 to 1.5 on 40% of the dataset using [audumentations](https://iver56.github.io/audiomentations/).
93
  * adding data augmentation with [audiomentations](https://iver56.github.io/audiomentations/) on 40% of the dataset to prepare it for training the recitations spliter.
94
 
95
  The codes for building this dataset is available at [github](https://github.com/obadx/recitations-segmenter)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  configs:
3
+ - config_name: default
4
+ data_files:
5
+ - split: train
6
+ path:
7
+ - data/recitation_0/train/*.parquet
8
+ - data/recitation_1/train/*.parquet
9
+ - data/recitation_2/train/*.parquet
10
+ - data/recitation_3/train/*.parquet
11
+ - data/recitation_5/train/*.parquet
12
+ - data/recitation_6/train/*.parquet
13
+ - data/recitation_7/train/*.parquet
14
+ - split: validation
15
+ path:
16
+ - data/recitation_0/validation/*.parquet
17
+ - data/recitation_1/validation/*.parquet
18
+ - data/recitation_2/validation/*.parquet
19
+ - data/recitation_3/validation/*.parquet
20
+ - data/recitation_5/validation/*.parquet
21
+ - data/recitation_6/validation/*.parquet
22
+ - data/recitation_7/validation/*.parquet
23
+ - split: test
24
+ path:
25
+ - data/recitation_8/train/*.parquet
26
+ - data/recitation_8/validation/*.parquet
27
  dataset_info:
28
  splits:
29
+ - name: train
30
+ num_examples: 54823
31
+ - name: test
32
+ num_examples: 8787
33
+ - name: validation
34
+ num_examples: 7175
 
35
  featrues:
36
  - dtype: string
37
  name: aya_name
 
84
  - null
85
  - 1
86
  name: labels
87
+ language:
88
+ - ar
89
+ license: cc-by-nc-4.0
90
+ task_categories:
91
+ - automatic-speech-recognition
92
+ tags:
93
+ - quran
94
+ - arabic
95
+ - speech-segmentation
96
+ - audio-segmentation
97
+ - audio
98
  ---
 
99
 
100
+ # Automatic Pronunciation Error Detection and Correction of the Holy Quran's Learners Using Deep Learning
101
+
102
+ [Paper](https://huggingface.co/papers/2509.00094) | [Project Page](https://obadx.github.io/prepare-quran-dataset/) | [Code](https://github.com/obadx/recitations-segmenter)
103
+
104
+ ## Introduction
105
+ This dataset is developed as part of the research presented in the paper "Automatic Pronunciation Error Detection and Correction of the Holy Quran's Learners Using Deep Learning". The work introduces a 98% automated pipeline to produce high-quality Quranic datasets, comprising over 850 hours of audio (~300K annotated utterances). This dataset supports a novel ASR-based approach for pronunciation error detection, utilizing a custom Quran Phonetic Script (QPS) designed to encode Tajweed rules.
106
+
107
+ ## Recitation Segmentations Dataset
108
+
109
+ This is a modified version of [this dataset](https://huggingface.co/datasets/obadx/recitation-segmentation) with these modifications:
110
  * adding augmentation to the speed of the recitations utterance with column `speed` reflects the speed from 0.8 to 1.5 on 40% of the dataset using [audumentations](https://iver56.github.io/audiomentations/).
111
  * adding data augmentation with [audiomentations](https://iver56.github.io/audiomentations/) on 40% of the dataset to prepare it for training the recitations spliter.
112
 
113
  The codes for building this dataset is available at [github](https://github.com/obadx/recitations-segmenter)
114
+
115
+ ## Results
116
+ The model trained with this dataset achieved the following results on an unseen test set:
117
+
118
+ | Metric | Value |
119
+ |-----------|--------|
120
+ | Accuracy | 0.9958 |
121
+ | F1 | 0.9964 |
122
+ | Loss | 0.0132 |
123
+ | Precision | 0.9976 |
124
+ | Recall | 0.9951 |
125
+
126
+ ## Sample Usage
127
+
128
+ Below is a Python example demonstrating how to use the `recitations-segmenter` library (developed alongside this dataset) to segment Holy Quran recitations.
129
+
130
+ First, ensure you have the necessary Python packages and `ffmpeg`/`libsndfile` installed:
131
+
132
+ #### Linux
133
+
134
+ ```bash
135
+ sudo apt-get update
136
+ sudo apt-get install -y ffmpeg libsndfile1 portaudio19-dev
137
+ ```
138
+
139
+ #### Winodws & Mac
140
+
141
+ You can create an `anaconda` environment and then download these two libraries:
142
+
143
+ ```bash
144
+ conda create -n segment python=3.12
145
+ conda activate segment
146
+ conda install -c conda-forge ffmpeg libsndfile
147
+ ```
148
+
149
+ Install the library using pip:
150
+ ```bash
151
+ pip install recitations-segmenter
152
+ ```
153
+
154
+ Then, you can run the following Python script:
155
+
156
+ ```python
157
+ from pathlib import Path
158
+
159
+ from recitations_segmenter import segment_recitations, read_audio, clean_speech_intervals
160
+ from transformers import AutoFeatureExtractor, AutoModelForAudioFrameClassification
161
+ import torch
162
+
163
+ if __name__ == '__main__':
164
+ device = torch.device('cuda')
165
+ dtype = torch.bfloat16
166
+
167
+ processor = AutoFeatureExtractor.from_pretrained(
168
+ "obadx/recitation-segmenter-v2")
169
+ model = AutoModelForAudioFrameClassification.from_pretrained(
170
+ "obadx/recitation-segmenter-v2",
171
+ )
172
+
173
+ model.to(device, dtype=dtype)
174
+
175
+ # Change this to the file pathes of Holy Quran recitations
176
+ # File pathes with the Holy Quran Recitations
177
+ file_pathes = [
178
+ './assets/dussary_002282.mp3',
179
+ './assets/hussary_053001.mp3',
180
+ ]
181
+ waves = [read_audio(p) for p in file_pathes]
182
+
183
+ # Extracting speech inervals in samples according to 16000 Sample rate
184
+ sampled_outputs = segment_recitations(
185
+ waves,
186
+ model,
187
+ processor,
188
+ device=device,
189
+ dtype=dtype,
190
+ batch_size=8,
191
+ )
192
+
193
+ for out, path in zip(sampled_outputs, file_pathes):
194
+ # Clean The speech intervals by:
195
+ # * merging small silence durations
196
+ # * remove small speech durations
197
+ # * add padding to each speech duration
198
+ # Raises:
199
+ # * NoSpeechIntervals: if the wav is complete silence
200
+ # * TooHighMinSpeechDruation: if `min_speech_duration` is too high which
201
+ # resuls for deleting all speech intervals
202
+ clean_out = clean_speech_intervals(
203
+ out.speech_intervals,
204
+ out.is_complete,
205
+ min_silence_duration_ms=30,
206
+ min_speech_duration_ms=30,
207
+ pad_duration_ms=30,
208
+ return_seconds=True,
209
+ )
210
+
211
+ print(f'Speech Intervals of: {Path(path).name}: ')
212
+ print(clean_out.clean_speech_intervals)
213
+ print(f'Is Recitation Complete: {clean_out.is_complete}')
214
+ print('-' * 40)
215
+ ```
216
+
217
+ ## License
218
+
219
+ This dataset is licensed under the [Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License](http://creativecommons.org/licenses/by-nc-sa/4.0/).